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Chapter 1

Zero-Point Energy in
Early Quantum Theory

The existence of a zero-point energy of size %hu [is] probable.
— Albert Einstein and Otto Stern (1913)

1.1 Introduction

The importance of the blackbody problem in the development of quantum
theory is recognized by every serious student of modern physics. What is
not so widely known is that blackbody theory led also to the concept of
zero-point energy, which was later to appear naturally in the mathematics
of quantum theory. The relation of this energy to early premonitions of
wave-particle dualism is similarly not widely appreciated. This chapter is
a discussion of these roots of the concept of zero-point energy. We do not
proffer any sort of rigorous historical analysis, but only a glimpse into some
of the early physics of energy at the absolute zero of temperature.

1.2 The Blackbody Problem

In 1860 Kirchhoff derived a general relation between the radiative and ab-
sorptive strengths of a body held at a fixed temperature T. According to
Kirchhoff’s law the ratio of the radiative strength to the absorption coeffi-
cient for radiation of wavelength ) is the same for all bodies at temperature
T, and defines a universal function F((A,T). This led to the abstraction of
an ideal blackbody for which the absorption coefficient is unity at evefy
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wavelength, corresponding to total absorption. Thus F(A,T) characterizes
the radiative strength at wavelength X of a blackbody at temperature T.
The problem was to determine the universal function F(\T).

An important step was taken in 1884 by Boltzmann, who invoked several
aspects of Maxwell’s electromagnetic theory. The most important of these
for the present discussion is the result that isotropic radiation exerts on a
perfectly reflecting surface a pressure u/3, where u is the energy density
of the radiation.! Boltzmann considered blackbody radiation confined in a
cylinder of volume V, one end of which is a perfectly reflecting piston. The
radiation pressure on the piston increases the volume by dV, and in order
to maintain a constant temperature an amount of heat

dQ = dU + PdV = d(uV) + %udV =Vdu+ %udV (1.1
must be added, according to the first law 6f thermodynamics. Kirchhoff’s

law implies that the total energy density u over all wavelengths is a function
only of T, so that

du 4
dQ = VﬁdT-i— EudV (1.2)
Associated with the expansion of the cylinder is an increase in entropy by
1 V du 4u
ds = TdQ = -j;ﬁdT+ §§3dV, (1.3)

which, according to the second law of thermodynamics, is an exact differ-
ential. Thus

05 Vdu 85 4u (1.4)
aT ~— T dT’ 8V~ 3T )
and 9*s 028 d d
ldu 4 u
—— T ———— T e T — e | — 1.
5757 = gver = T = 577 (T): (15)
from which it follows that du/dT = 4u/T and
u=bT* (Stefan—Boltzmann law), (1.6)

where b is a universal constant. Stefan in 1879 had in fact suggested such
a relation from an analysis of experimental data.

1A plane wave exerts a pressure 2u on a reflecting surface on which it is normally
incident. (See, for instance, W. K. H. Panofsky and M. Phillips, Classical Electricity
and Magnetism (Addison-Wesley, Reading, Mass., 1962), p. 193.) For plane waves
propagating with equal intensities in both directions normal to the surface, this is reduced
to u, or 4/3 if the radiation is isotropic.
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The Stefan-Boltzmann law stands in conflict with elementary classical
models of equilibrium between radiation and matter. Consider the classical
oscillator model of an atom, where an electron is assumed to be bound by
an elastic restoring force. If p(v)dv denotes the energy per unit volume of
radiation in the frequency interval [v, v + dv}, then the rate at which the
atom absorbs energy from the radiation field may be shown to be given by
the formula (see Appendix A)

2
: me
Wa = 3—n-l'P(Va), (1.7)

where Wy is the electron energy, e and m are its charge and mass, re-
spectively, and v, is the natural oscillation frequency of the electron in the
atom. The rate at which the electron radiates electromagnetic energy Wem
is given by the well-known classical Larmor formula:

: 2¢%a?
Wem = ——-, (1.8)

where a is the acceleration of the electron. For oscillation at frequency
Vo = wo/27, a = —w?z and

(1.9)

where z is the electron displacement from its equilibrium position in the
classical oscillator model of the atom. Now according to the virial theorem
of classical mechanics the average potential energy mw?z? of the (one—
dimensional) electron oscillator is equal to the average kinetic energy, and
their sum is the total oscillator energy U. In a state of equilibrium between
radiation and matter, furthermore, the energy absorption rate (1.7) should
equal the emission rate (1.9). Thus

, 4,24
Wen = (3_2”__"_) 2,

3c3

T 0% 8rv?
p(v,) = (mw?z?) = ::o U, (1.10)
or more generally
8mv?
pv) = —73-U (1.11)

for a blackbody, which absorbs at all frequencies v. Finally the equipartition
theorem of classical statistical mechanics demands that the average value
of U in thermal equilibrium is kT, where k is Boltzmann’s constant, so that
the spectral energy density of thermal radiation must be

8 2
p(v) = ( :: )kT (Rayleigh—Jeans distribution). (1.12)
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The total electromagnetic energy density

u= /000 p(v)dv (1.13)

violates the Stefan-Boltzmann law. Furthermore the Rayleigh-Jeans law
suffers from the ultraviolet catastrophe: u diverges when (1.12) is used for
p(v).

Equation (1.11) was derived by Planck and, as we shall see, played a
very important role in his work on the blackbody problem.

Equation (1.12) for the spectral energy density of blackbody radiation
was first deduced in a less explicit form by Rayleigh in 1900.2 Although
the derivation just outlined might be criticized for its reliance on a partic-
ular model of an atomic electron, it is easy to derive the Rayleigh-Jeans
distribution on more general classical grounds. An electromagnetic field
mode of frequency v is basically just a linear harmonic oscillator (see Chap-
ter 2) that, according to the classical equipartition theorem, has an aver-
age energy kT at thermal equilibrium. Since the number of modes per
unit volume in the frequency interval [v,v + dv] is (8w?/¢%)dv, the elec-
tromagnetic energy per unit volume in this frequency interval should be
(872 /c3)(kT)dv = p(v)dv, which is the Rayleigh-Jeans law, independent
of any particular model for the atoms with which the radiation is in thermal
equilibrium. From this perspective the failure of glassical theory, according
to Kelvin and Rayleigh, must lie in its equipartition theorem.

Another classical result, due to Wien in 1893, must be mentioned. Wien
basically followed Boltzmann’s model of radiation contained in a cylinder
with a piston, but included the Doppler shift of radiation reflected by the
moving piston. This allowed radiant energy to be exchanged among differ-
ent frequencies. Wien showed that the spectral energy density must follow
the general form

p(v) = v*¢1(v/T)  (Wien displacement law), (1.14)

or, in terms of wavelength,

= A"5¢,(AT) (Wien displacement law), (1.15)

p(A) = p(v) %

where ¢; and ¢; are undetermined functions. The Rayleigh-Jeans distri-
bution obviously obeys Wien’s “displacement law” (1.14).

2Motivated by Wien’s work, Rayleigh also allowed for the possiblility that a factor
e—(const)¥/T ghould be included, thus avoiding the ultraviolet catastrophe.
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A few years later Wien presented arguments in support of the distribu-
tion
p(A) = ar~%¢=P/*T  (Wien distribution), (1.16)

where a and B are constants. A similar distribution function, with the
factor A% replaced by A~7, had just been proposed by Paschen as a fit
to his experimental data. Paschen’s data indicated that y was between
5 and 6, thus providing some support for the displacement law. Further
measurements showed that 4 was indeed close to 5.

Wien’s arguments for (1.16) seem to have been guided more by the
desired result than by physics. To wit, he made the peculiar assumption
that the wavelength and intensity of the radiation from a given atom (or
molecule) are determined only by that atom’s velocity. This allowed him
to adduce the exponential term in (1.16) from the factor exp(—mv?/2kT)
in the Maxwell-Boltzmann velocity distribution function. In any case the
Wie]? distribution was soon to find a more secure provenance in Planck’s
work.

1.3 Planck’s First Theory

Given that Planck was an expert in thermodynamics, it is not surpris-

‘ing that his work on the blackbody problem emphasized the concept of

entropy. In a series of papers in the late 1890s, Planck produced a deriva-
tion of the Wien distribution from general thermodynamical considerations
plus the assumption that the entropy of a collection of radiators depends
only on their total energy. An important result was the following relation
between the entropy S and average energy U of an elementary radiator
(or “molecule” for our purposes) in thermal equilibrium with radiation at
temperature T :

s A

=T (1.17)
where for a given radiator A is a constant. From this equation and the
general relation 8S/0U = 1/T it follows that

U = Be™ VAT, (1.18)
where B is another constant that, like A, may depend on the frequency

of a given radiator. This result, together with (1.11), yields the radiation
spectral energy density

p(v) = f(v)e VAT, (1.19)
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where f(v) is some function of v. Wien’s displacement law implies that
f(v) and A are proportional to v3 and v~!, respectively, so that

p(v) = Civ3e~P¥I/T (C,D constants) (1.20)

or
p(A) = ar~8e"PI*T  (a,p constants), (1.21)

which is the Wien distribution.

The Wien distribution, however, was soon found to be incorrect as ex-
perimentalists extended their spectral measurements to higher wavelengths.
This was accomplished by the “residual rays” method, whereby longer wave-
lengths were isolated by multiple reflections off an appropriate crystal. In
February 1900 Lummer and Pringsheim reported data that deviated from
the Wien distribution by 40-50% for wavelengths between 12 and 18 pm,
and in October similar conclusions were reported by Rubens and Kurlbaum.

It was the work of his friend Rubens that led Planck to his formula for
the spectral energy density of thermal radiation. In particular, the data
indicated that p(v) was proportional to the temperature T for small v and
large T. Planck found a formula with that behavior at small v and which
approximated the Wien distribution for large v.

In a paper delivered at a meeting on 19 October Planck presented his
formula and provided some justification for it.3 For small v and large T,
the experimental result p(v) o< T and equation (1.11) imply U o< T and
therefore, since 8S/U = T~1,82S/0U* o< U~% and S o logU. On the
other hand (1.17) leads to the Wien distribution, which has the correct
form for large v and small T'. Planck proposed the interpolation

a*s -A

57 = T+ 0) (A, B constants). (1.22)

According to Planck, equation (1.22) “is the simplest by far of all the
expressions which yield S as a logarithmic function of U (a condition which
probability theory suggests) and which besides coincides with the Wien law
for small values of U.” Using again the relation S/0U = 1 /T, equation
(1.11), and the Wien displacement law, one obtains from (1.22) the spectral
energy density

ai~s

p(}) = SRT 1 (a, B constants). (1.23)

This formula was found to agree with all the existing data. In order to give
it “a real physical meaning,” Planck began what he later described as “a

3See the books by Kuhn and Pais and the articles by Klein cited at the end of the
chapter.
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few weeks of the most strenuous work of my life.” The culmination of that
work was the birth of quantum theory.

Planck’s reasoning may be glibly summarized as follows. Consider N
radiators of frequency v and total energy Uy = NU = Pe, where P
is a large integer and ¢ is some finite element of energy. The entropy
Sy = NS = klogWy, where Wx is the number of ways in which the P
energy elements can be distributed among the N radiators. f N = P =2
for instance, then the different partitions of the energy between the twc;
radiators are (2¢,0), (¢, ¢€), and (0, 2¢) if the energy elements are assumed
to be indistinguishable. Under this assumption we have, in general,

_(N—1+P)!

v = "piv - (1.24)

‘which is'th'e number of ways in which P indistinguishable balls can be put
into N distinguishable boxes. Stirling’s approximation (log M! = M log M —
M for large M) then gives, for N, P >> 1,

k (N-1+P)!

S = —log—m—mmo0ou__ 2
N 6PN -1

P P P P
= k|(14+=)log(l+—=)—— il
[a+ 2ytog1+ 1) - F1os 7|
U U U U
= k — i W il
[(1+ e)log(1+ €) - log e]' (1.25)
Thus as
1 k €
WoT "< log(1+ 77) (1.26)
or
€
U=~ (1.27)

for the average energy of each radiator. The excellent agreement between
(1.23) and experiment, together with equation (1.11), suggests that € is
inversely proportional to the wavelength, or directly proportional to the
frequency of the oscillator:

€= hv. (1.28)
Then
hv
U= (1.29)
and (1.11) implies
8rhi3/c3

p(v) = T ] (Planck spectrum) (1.30)
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for the spectral energy density of thermal radiation.

The expression (1.25) for S satisfies equation (1.22) with A = k and
B = ¢. Once (1.25) is obtained, therefore, one is led to the form (1.23)
for the spectral energy density. The great success of (1.23) in fitting the
experimental data led Planck to what he later called an “act of desperation”
needed to derive (1.25).

One aspect of this desperate act is the way Planck counted the num-
ber of ways, or “complexions,” in which P energy elements could be dis-
tributed among N radiators. His counting procedure was totally at odds
with classical statistical methods in its treatment of the energy elements as
fundamentally indistinguishable. In one sense Planck was following Boltz-
mann in regarding all complexions as equally likely, but of course his way
of counting the number of complexions was radically different. His “energy
elements” obeyed what would much later be recognized as Bose-Einstein
statistics.

Another revolutionary (nonclassical) aspect of Planck’s calculation, of
course, is the physical significance it attaches to the “energy elements” of
size €, and the relation (1.28) between ¢ and the frequency v of a material
oscillator. Boltzmann had also employed “energy elements” in his counting
of complexions, but in his calculations € had no particular significance and
in fact could ultimately be taken to be zero once a formula for Wy had been
obtained. If Planck had taken the limit ¢ — 0 in equation (1.26), however,
then 9S/9U — k/U and 92S/U? — —k/U?, which leads to the Rayleigh-
Jeans distribution. In Planck’s derivation of his spectrum, therefore, the
quantization of energy was absolutely essential.

This is the traditional view of Planck’s innovation. It should be noted,
however, that Kuhn (1978) has concluded that Planck did not in 1900 intro-
duce any physical quantization of either radiation or material radiators. He
argues that Planck’s radiators were simply “a device for bringing radiation
to equilibrium, and it was justified, not by knowledge of the physical pro-
cesses involved, but by Kirchhoff’s law, which made the equilibrium field
independent of the equilibrium-producing material.”

Until about 1905 Planck’s formula was regarded as little more than
a superb fit to the experimental data. Its true significance began to be
appreciated only when it was realized that the Rayleigh-Jeans law was an
inevitable consequence of classical physics and the equipartition theorem,
and therefore that the blackbody experiments had uncovered a fundamental
failure of known (classical) theory.

A curious circumstance relating to zero-point energy, which was noted
by Einstein and Stern (1913), is worth mentioning. Consider the classi-
cal limit kT >> hv of the expression (1.29) for the average energy of an
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oscillator in thermal equilibrium with radiation:

hv hv kT 1
U= o = > kT — =hv.
w1 TRy eig e (8

Thus U contains a first-order temperature-independent correction to kT,
the energy predicted by the equipartition theorem in the classical limit.

But 1 5
v 1

which includes the zero-point energy %hl/, does not have a first-order cor-

rection to kT in the classical limit. In Planck’s “second theory” U was in
fact replaced by U + %hu.

1.4 Planck’s Zero-Point Energy

It was mentioned earlier that it took several years for the profound sig-
nificance of Planck’s distribution to be appreciated. Planck himself was
unsatisfied with the largely ad hoc theory he had used to derive his spec-
trum, and for many years he explored alternative hypotheses that might
lead to it.

In 1912 Planck published his “second theory.” The absorption of radia-

tion was assumed to proceed according to classical theory, whereas emission

of radiation occurred discontinuously in discrete quanta of energy. Assume
that an oscillator can radiate only after it has (continuously) absorbed an
energy hv. Let P, be the probability that it has energy between (n — 1)hv
and nhv. When, as a result of absorption of radiation, its energy reaches
nhu, there is a probability p that it will lose all its energy in the form of
radiation, and a probability 1 —p that it continues to absorb without emis-
sion of radiation. Thus P, = Pi(1 —p), Ps = P2(1 — p) = A(1 - p)?, ..,
P,=P(1-p)"~!, and

S Po=1=) P(l-p)"'=P/p (1.33)
n=1 n=1

or P = p is the probability that an oscillator in equilibrium with radiation
has energy between 0 and hv, P, = p(1 — p) is the probability that it has
energy between hv and 2hv, and P, = p(1 — p)*~! is the probability that
it has energy between (n — 1)hv and nhv. Following Boltzmann, Planck
defines the oscillator entropy as

S = —kY PalogP,=-kY_ p(1-p)" " loglp(1-p)*""]
n=1 n=1
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= —k [% logp + (% —1) log(% - 1)] . (1.34)

Planck now assumes that all energies between (n — 1)hv and nhv are
equally likely, so that the average energy of the oscillators with energy
between (n — 1)hv and nhv is 3(n +n —1)hv = (n — 1)hv. The average
oscillator energy is then

U= i(n - %)huP,. = hui(" - %)p(l -p)" = (% B %)h" (1.35)
rpurt n=1

or 1/p = U/hv + % . From (1.34), therefore,

v 1 U 1 v 1 U 1 ]
=k |(-= + 2)log(—— + =) — (— — =) log(— - )| - 1.36
s= k[ + Pl +3) - (G~ Ples(y — )] (139
Using once again the relation 8S/0U = 1/T, Planck obtained
1, eM/*T 41 hv 1
== = =hv. 37
U=shvmomr—1 = it —1 + ghv (1.37)

This implies that U # 0 when T — 0: when T' — 0,U — %hu. Planck’s
equation (1.37) marked the birth of the concept of zero-point energy.

To derive p(v) Planck could not resort to equation (1.11), since the

derivation of that equation assumed continuous absorptiomand emission
processes. Instead he made the assumption that the ratio of the probability
that an oscillator does not emit radiation, to the probability that it does,
is proportional to p(v): (1 — p)/p = Cp(v), or 1/p = Cp(v) + 1, where
C is a constant of proportionality. This assumption is plausible in that,
the greater the radiation intensity, the more absorption should dominate
emission. (Planck, of course, was not at this time aware of the possibility
of stimulated emission!) Then, from (1.35), U = [Cp(v) + i]hv or

1 1

W)= G 1 (1.38)

To determine C Planck appeals to the classical limit, where the Rayleigh—
Jeans law should apply: for kT >> hv, p(v) should reduce to (1.12), which
requires that 1/C = 87hv3/c® and therefore that

8whi3/c?

It is interesting that, in deducing C in this way, Planck was employing what
would soon come to be called the correspondence principle. Furthermore
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Planck’s probability p might well be regarded as the first example of a
quantum transition probability.

It is also noteworthy that in Planck’s second theory the material oscilla-
tors have zero-point energy but the electromagnetic field does not: p(v) — 0
for T — 0. Had Planck simply used equation (1.11) to relate p(v) and U,
he would have obtained from (1.37) the spectral energy density

8whi3/c3

p’(V) = p(l/) + 47rhV3/03 = W__l

+ 4rhi? /3, (1.40)
which, as we will see later, turns out to be the correct spectrum from the
standpoint of modern quantum electrodynamics. The zero-point energy
appearing in Planck’s expression (1.37) is also perfectly correct according
to modern theory, even though Planck’s route to it is not.

By 1914 Planck was convinced that zero-point energy would be of no
experimental consequence. However, the concept attracted much attention,
and soon came to play a major role in the work of Einstein.

1.5 The Einstein—Hopf Model

“Concerning a Heuristic Point of View Toward the Emission and Trans-
formation of Light,” Einstein (1905) deduced that radiation satisfying the
Wien distribution “behaves thermodynamically as though it consisted of a
number of independent energy quanta of magnitude [hv].” Based on this
viewpoint he predicted the linear relation between radiation frequency and
stopping potential in the photoelectric effect, a prediction confirmed by
Millikan’s experiments in 1916. In 1906 he argued that “in emission and
absorption the energy of a [Planck oscillator] changes by jumps which are
integral multiples of hv.” These were the beginnings of the photon concept.
Einstein struggled with the blackbody problem for more than ten years
after he introduced his heuristic viewpoint concerning energy quanta of
radiation. In one important paper Einstein and Hopf (1910b) studied a
simple model for the thermal equilibrium between oscillating dipoles and
electromagnetic radiation. Imagine each dipole to consist of a particle of
mass m and charge e, bound by an elastic restoring force to a mass M (>>
m) of opposite charge. The equation of motion for a linear dipole oscillator
is then (see Appendix A)
2
%t-;+wfz— i = %E,(t), (1.41)
where w,(= 27v,) is the natural oscillation frequency, E;(t) is the z-
component of the external electric field acting on the particle, 7 2 is the
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radiation reaction term, and T = 2e2/3mc3. The two oppositely charged
particles define an electric dipole moment ez(t). Implicit in equation (1.41)
is the electric dipole approximation of neglecting any spatial variation of
E,(t) over the distance separating the particles. It is also assumed that the
interaction of the dipole with the magnetic field is negligible.

Equation (1.41) is essentially the same equation used earlier by Planck to
derive equation (1.11) (Appendix A). In the Einstein—Hopf model, however,
the dipole oscillators of mass M + m = M are allowed to move; for
simplicity they are constrained to move only along the z axis. Einstein
and Hopf showed that there is a retarding force on a moving dipole as a
result of its interaction with the field. This force acts to decrease its kinetic
energy. Due to recoil associated with emission and absorption, however,
the field also acts to increase the kinetic energy of a dipole. The condition
for equilibrium is that the increase in kinetic energy due to recoil balances
the decrease in kinetic energy associated with the retarding force.

Assuming v/c << 1, Einstein and Hopf showed that the retarding force
due to motion through a thermal field of spectral energy density plw,o) is

F = —Rbv, (1.42)

where AnZe? J
_2mre _ Yo 4P
R= 5mc? [p(wo) 3 dwo] -~ (143)

and v is the velocity of the dipole. Essentially this same result is derived
in Appendix B.

Consider now a dipole with linear momentum Mu(t) at time ¢. After a
short time 6t its momentum is

Mou(t + 6t) = Mo(t) + A — Ru(t)ét, (1.44)

where A is the impulse imparted to the dipole in the time interval 8t as a
result of recoil associated with emission and absorption of radiation. Then

M2o3(t + 6t) — M?0%(t) = A2 — 2M R (t)6t + (2M — Rét)o(t)A (1.45)

when &t is taken to be small enough (or M large enough) that terms
quadratic in 8t are negligible. Now take the equilibrium ensemble aver-
age of both sides of (1.45):

2M(( M+ 61)) — (G MO(@)] = 0= (A7) - ARSU(Z MO (D). (1.46)

In writing this expression we have used the fact that (v(t)A) = 0, since
A is equally likely to be positive or negative in the time interval from t
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to t + 6t. In thermal equilibrium, furthermore, the equipartition theorem
requires the average kinetic energy to be (1 Mv%(t)) = $kT. The condition
for thermal equilibrium is therefore

(6t)"*(A?) = 2RkT. (1.47)

It remains to determine (AZ?).

The force on an electric dipole moment eZz(t) in the Einstein-Hopf
model, where the dipole points in the z direction and is free to move only
along z, may for our purposes be taken to be F, = e£z(t)0E,(t)/0z.* The
impulse imparted to the particle during the time interval from t = 0 to
t = &t is thus st 5 ()

E.(t
A= e/o dtz(t) Eral (1.48)
Einstein and Hopf write the electric field as a superposition of plane waves
with independent random phases 0} ,:

E(r,t) - "Z [Ak)‘e—i(w”-*-ok") _ Ai‘{)‘e‘(“”"”kx)]ek)‘, (149)
ka

where e, is a unit polarization vector for a plane wave with wave vector
k and linear polarization index A (= 1,2). The steady-state solution of
equation (1.41) is then

ie —f(w . i(w
2(t) = = [Fixe S SR A SY } (1.50)
k

where the origin of coordinates has been chosen to be at the position of
the dipole and F, = —Ap, ek, [wi — w? + irwi]~!, where ey, , is the z-
component of e}, . In aseparate paper Einstein and Hopf ( 1910a) show that
E,(t) and 8E, /dz must be treated as independent random variables in the
time integral (1.48). It then follows from (1.48)-(1.50) by straightforward
manipulations that (A) = 0 and

4ricir

7 ah = (557) o) (151)

o

where the ensemble average is taken over the random phases 6}, .

Equation (1.47), together with (1.43) and (1.51), now gives a differential
equation that must be satisfied by the spectral energy density of thermal
radiation:

wd 2
o) - 52 = (gmeg) ) (1.52)

4See P. W. Milonni and M.-L. Shih, Am. J. Phys. 59, 684 (1991).
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The solution of this equation satisfying p(0) = 0 is

wkT

which is seen to be just the Rayleigh-Jeans law when we recall that w = 27v
and p(w) = p(v)/2~.

The beautifully cogent arguments of Einstein and Hopf provide further
evidence that the Rayleigh-Jeans law is an inexorable consequence of classi-
cal physics. However, we shall see that their results are dramatically altered
when zero-point energy is postulated.

1.6 Einstein and Stern’s Zero-Point Energy

In 1913 Einstein and Stern noted that an ad hoc postulate about zero-point
energy in the Einstein—-Hopf model would lead to the Planck spectrum.
First let us note that equation (1.11) allows us to write (1.52) in a form in
which the average dipole energy U appears explicitly:
wdp 1

Now suppose the average oscillator energy U is replaced by U + hw. This
means that the dipole oscillators are now assumed to have a zero-point
energy hw. Equation (1.54) is then replaced by

wdp 1 hw
pW -375 = gEprUH T A
23 hw
= 3omr? @+ )
23, hw3
= ol Wt —55PW)l- (1.55)
The solution of this equation satisfying p(0) = 0 1s
hw3 fn2c3
pw) = Fol¥T —1 (Planck spectrum). (1.56)

In other words, if it is assumed that the dipole oscillators in the Einstein—
Hopf model have a zero-point energy hw, then the equilibrium spectrum of
radiation is found to be the Planck spectrum.

The oscillator zero-point energy postulated by Einstein and Stern is
twice that found earlier by Planck. Since we now know that Planck’s zero-
point energy %hw is the correct one, it is interesting to see how Einstein and
Stern arrived at the correct spectrum using the wrong zero-point energy.
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According to quantum theory a field mode of frequency w, like a material
oscillator, has a zero-point energy %hw (see Chapter 2). The total zero-
point energy of a linear dipole oscillator of frequency w and a field mode of
the same frequency is therefore %hw+%hw = hw. Einstein and Stern’s zero-
point energy hw is just this, but they attributed it solely to the material
dipole oscillators.

Suppose we include in the Einstein—-Hopf model a zero-point energy %hw
for a dipole oscillator and a zero-point energy %hw for each field mode. Since
there are (8712/c%)dv = (w?/n%c®)dw field modes per unit volume in the
frequency interval [w,w + dw), the spectral energy density of the zero-point
field is

2 1 hw3
po(w) = (w /7r2c3)§hw =23 (1.57)

If we replace p(w) in (1.54) by p(w) + po(w), the left side is unchanged:
w dp

[p(w) + pof)] — S [p(w) + pow)] = plw) = S5

If we ‘a.lso account for the zero-point energy of the dipole oscillators by
replacing U by U + LAw, the product p(w)U on the right side of (1.54) is
changed to

(1.58)

() + pol)llU + ghe] = p(w)U + 3hup(w)

1
+ po(W)U + ihw/’o(w)

w

= TELA0) + o)) + sz o] + Hiopo)

w

1I'263 3
= o) + amgp@)] + ghwpe(@), (1.59)

where we have used (1.57) and (1.11) in the form U = (7%¢3/w?)p(w).

The term hwpo(w) in (1.59) results from a coupling of the zero-point
motion of a dipole oscillator to the zero-point oscillations of the field. In
quantum theory, in effect, no such coupling arises: an oscillator in its ground
state in the absence of any applied field remains in its ground state. We
shall see later how this comes about, but for now let us just accept it and
drop the term 3Awp,(w) in (1.59):

1 723 hw3
[p(w) + po(W)IU + 5hw] = —[p*(w) + —5P(w)]- (1.60)
From (1.54), (1.58), and (1.60), then, we have
wdp w33 hw?

pw) = 370 = 3oappll W) + 3 5PW)), (1.61)
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which is exactly the Einstein-Stern equation (1.55). The complete spec-
trum p(w) + po(w) is then given by equation (1.40).

This route to the Planck spectrum may be summarized as follows. We
modified the Einstein-Hopf model to include a zero-point energy 1hw for a
dipole oscillator and a zero-point energy %hw for each mode of the electro-
magnetic field, and anticipated a result of quantum theory that there is no
contribution from the coupling of the zero-point oscillations of the dipole
and the field. This led to the Einstein-Stern equation (1.55). Einstein and
Stern, however, did not invoke any zero-point energy of the field, and to
arrive at the Planck spectrum their dipole oscillators had to have a zero-
point energy %hw plus what we now know to be the zero-point energy of a
field mode of the same frequency.

Why did Einstein and Stern not assume zero-point energy for the field?
After all, one might have thought that the relation (1.11) between p(w) and
U would have made it obvious that, if either the dipole oscillator or the
field has a zero-point energy, then so must the other. If Planck’s zero-point
energy %hw is added to U in (1.11), for instance, then for consistency we
must add the spectral energy density po(w) of the zero-point field to p(w) :

wZ
o) + polt2) = a5 (U + ), (1.62)

or again po(w) = hw?®/272c3, which in turn implies that each field mode
has a zero-point energy -;-hw‘

However, such a “consistency” argument rests on the usual acuity of
hindsight. The fact is that at various stages in Einstein’s long efforts to
understand the Planck spectrum he seriously doubted the general validity
of Planck’s equation (1.11). This is not surprising, for if Planck had simply
invoked equipartition of energy and used U = kT in (1.11), he would have
obtained the Rayleigh-Jeans spectrum. It is not clear whether Planck was
even aware at the time of the classical equipartition theorem. If he had
known and believed the equipartition theorem, as Einstein later remarked,
“he would probably not have made his great discovery.”®

There is another reason why Einstein and Stern might have been unwill-
ing to attribute a zero-point energy to the field: if p(w) and U are replaced
by p(w) + po(w) and U + %hw, respectively, in the Einstein—-Hopf model,
then one obtains the Rayleigh-Jeans spectrum for the total spectral density
p(w) + po(w). Crucial to the derivation of the Planck spectrum is the omis-
sion of the term 3hwp,(w) in (1.59). This omission occurs automatically in
the quantum theory of the Einstein-Hopf model, as we shall see in the next

5 Albert Einstein: Philosopher-Scientist, ed. P. A. Schilpp (Tudor, New York, 1949),
p. 43.

-~
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chapter. Without this consequence of quantum theory available to them,
Einstein and Stern may have simply discounted the possibility of zero-point
electromagnetic energy. Indeed, the first suggestion that there might be a
zero-point electromagnetic field is due not to Planck or Einstein and Stern
but to Nernst (1916). ,

1.7 Einstein’s Fluctuation Formula

Prior to his work with Hopf and Stern, Einstein (1909) had derived a for-
mula for the energy fluctuations of thermal radiation. Denoting the vari-
ance in energy in the volume V and in the frequency interval [w,w + dw]
by (AE2), we may write the Einstein fluctuation formula as

(AE2) = [hwp(w) + %ipz(w)]de. (1.63)

The importance of this formula lies in Einstein’s interpretation of it. The
first term in brackets, according to Einstein, may be obtained “if radiation
were to consist of independently moving pointlike quanta of energy hv” :

(AEZ) particles = hwp(w)V dw, (1.64)

wh.ereas the second term follows when the field is treated as a superposition
of independently fluctuating waves:

2 n2cd ,
(AEw)waves = _w'z—P (W)de (165)

Thu§ (AE?2) has both wave and particle contributions. The Einstein fluc-
tuation formula was the earliest indicator of the wave-particle dualism in
quantum theory.

The “wave” term (1.65) may be derived from the superposition (1.49)
of waves with independent random phases. For instance,

(E2(r,t)) = —=2Re Z Z [Akl)\lAkzhe_"(w"l+‘”*2)te‘(k‘+k’)'r
kix kaas
X (6—’(9klh+ok2*:)) — Ak A

* — (Wi, ~wiy)t
lAkQAge :

. —1(6 -
% e:(kl—k:).r(e ( k;», oknz))]eklz\n “€kay (1.66)

Where again the average is over the phases ) ,, which are assumed to be
independent, uniformly distributed random variables on the interval [0, 27].
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Thus
E (e, 1) =23 | Al I (1.67)
kx
and similarly
(Et(r, 1)) =80 | Akn 1)) (1.68)
kx
so that
(B4 (r, 1)) — (B2(r, 1)) =43 | A, [*)* = (E*(r, 1)) (1.69)
kx

Since the electromagnetic energy density is proporti(?nal to (E?), it ijollows
from (1.69) that the variance in energy associated with frequ'enc.y w is pro-
portional to p?(w). We omit the trivial details of the derivation, which
leads directly to equation (1.65). ‘ .

The “particle” term (1.64) in the Einstein fluctuation formula is of far
less obvious origin, and to derive it we temporarily assume the field energy
can be written as

E =) ny,hw, (1.70)
ka
so that its variance is -
(AE?) = Z(Ankx)zn%k?, (1.71)
kx

where the nj, are integers. Thus we are assuming that the field energy
is comprised of discrete quanta of energy hwk,‘and that the numbers of
quanta associated with different modes fluctuate independently. We assume
Poisson statistics for these quanta, so that

(And) = (nk,) (1.72)
and
(AE?) =Y (me, ) we™. (1.73)
kx

Since p(w) is proportional to the average number of photor}s at frec.luenc.y
w, equation (1.73) leads easily to the particle term (1.64) in the Einstein
fluctuation formula. .

The Einstein fluctuation formula is derived more thoroughly in t}}e next
chapter. For the present discussion we simply note that we can obtain both
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the “wave” and “particle” terms using the classical wave picture with zero-
point energy. That is, if we replace p(w) in (1.65) by p(w) + po(w), where

the spectral energy density p,(w) of the zero-point field is given by (1.57),
we have

w23
(AEz)waves - 7’[/’2(“’) + 2po(w)p(w) + Pg(“’)]Vd“’

2.3 2.3
= [ (W) + hep()lVde + ——p2

2 Po(w)Vdw

w

7|'263
= (AEz,)waves + (AE‘z)particles + Fpg(w)de

1
= (AE2)waves + (AE2)particles + Ehwpo(w)de.
(1.74)

The “extra” (third) term in this expression does not appear in the Einstein
fluctuation formula. Indeed we shall see in the following chapter that it
does not appear at all in quantum theory, for the same reason that the
term %hwpo(w) in equation (1.59) is absent in quantum theory.

But aside from this spurious “extra” term, we have obtained the Einstein
fluctuation formula from a classical wave perspective that includes zero-
point field energy. Obviously the argument is essentially the same as in our
approach to the Einstein-Stern theory, and suggests that the particle term
in the Einstein fluctuation formula may be regarded as a consequence of
zero-point field energy.

The particle term was in fact the novel element in Einstein’s fluctu-
ation formula, and Einstein emphasized that this term was incompatible
with classical wave theory (without zero-point energy). If there were only
classical wave fluctuations in thermal radiation, we could ignore the term
proportional to p(w) in equation (1.61). The result is

wdp w23

— —— T c—— 2
P@) - 335 = 3o’ @)

and the solution is the Rayleigh-Jeans spectrum, p(w) = (w?/w%c3)kT.
Without the wave term, on the other hand, (1.61) becomes
wdp hw

W) = 330 = 557P@)
and the solution of this equation is p(w) = (hw3/72c3)e~"*/*T  the Wien
distribution. This is consistent with the fact that in 1905 Einstein had
deduced his “heuristic point of view” concerning radiation energy quanta
by considering only radiation satisfying the Wien distribution.

(1.75)

(1.76)
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1.8 Einstein’s A and B Coeflicients

Einstein wrote to his friend Besso in November 1916 that “A sp!enflid light
has dawned on me about the absorption and emission .of radiation.” He
was referring to his new insight into his “heuristic pri.ncu.)le” of 1905, and
the basis it provided for an “astonishingly simple” derivation of the Planck

spectrum. ‘ . '
For the sake of completeness we summarize the argument here. Einstemn

assumes that an atom (or molecule) has discrete energy levels. L‘et Ny a.nd
N, be the numbers of atoms in energy levels El fipd E5, respectively, W.lth
E, > E;. (For simplicity we ignore the possibility c‘>f level degeneracu.es,
which does not affect the result for the spectral density qf thermal ‘rac'ha—
tion.) The rate at which N; changes due to the absorptlon. of radiation,
with the atomn making an upward transition to the lf.:vel E,, is assumed to
be proportional to Ny and the spectral energy density p(w,) at the Bohr
transition frequency w, = (Ez — Ey)/h:

(Nl)absorption = _B12N1p(wo)- (177)

Einstein proposes two kinds of emission processes by .which an atom can
jump from level E; to E, with the emission of.' radiation of frequency Wo.
One is spontaneous emission, which can occur in the absence of any radia-
tion and is described by the rate constant A : -

(Nl )spontaneous emission = A1 Na. (1 '78)

The other is stimulated emission, which is assumed to proceed at a rate
proportional to both N, and p(w,) :

(Nl)stimulated emission = B21N2P(wo)- (179)
The condition for equilibrium is
(Nl)absorption + (Nl)spontaneous emission + (Nl )stimulated emission — 0 (180)

or
Ag1 Na + Bayi Nap(wo) = B2 N1p(w,), (1.81)

Az /B2 _ Az1/Ba 1.82
plwe) = (B12/B21)(N1/N2) — 1 T (Bi2/Ba1)etvwelFT — 1 ’ (1.82)

since Na/Ny = e~ (Ea=E1)/¥T — ¢=hwe/FT jn thermal equilibrium. We are
using Bohr’s postulate (1913) that E; — E, = hw, , b.ut it is worth noting
that this relation in fact emerged naturally from Einstein’s analysis once the
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assumption of discrete energy levels was made and the Wien displacement
law was invoked.

At very high temperatures p(w,) becomes so large that spontaneous
emission is much less probable than stimulated emission. Then from (1.81)
we must have By = Bjy and, from (1.82),

A2 /By

p(wo) = eﬁTo/k—,I—,_—l . (183)
For kT >> hw,, furthermore,
~ A2 kT
plw,) =2 By T (1.84)

This is the limit where the radiation energy quanta are so small compared
with kT that the classical Rayleigh-Jeans law should be applicable. This
requires (Az; /B2y )(kT/hw,) = (w2/m2c®)kT, or

Agl = hwg
le - w23 (185)

and equation (1.83) then yields the Planck spectrum for p(w).

This derivation of the Planck spectrum joined aspects of Einstein’s ear-
lier work on radiation quanta with the theories of Planck and Bohr. But
in it Einstein had made several profoundly important theoretical advances,
and he suggested that “The simplicity of the hypotheses makes it seem
probable ... that these will become the basis of the future theoretical de-
scription.” He was absolutely correct: none of the developments since 1917
has required any modification of Einstein’s derivation of the blackbody
spectrum.

One major consequence of Einstein’s work, of course, was the introduc-
tion of the concept of stimulated emission. Without the stimulated emission
term, (1.81) and (1.82) are replaced by

A1 N2 = B1aN1p(w,), (1.86)
_An Ny _ hwd _pupkr
Plwo) = 3= = 33° I¥T, (1.87)

Without stimulated emission, therefore, Einstein would have obtained the
Wien distribution.

Einstein’s work was also the first to reveal atomic radiation in the form
of spontaneous emission as a nonclassical process in which “God plays dice”:
there is nothing to tell us exactly when the atom will make a spontaneous
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jump to a state of lower energy. Einstein later wrote to Born that “That
business about causality causes me a lot of trouble ... Can the quantum
absorption and emission of light ever be understood in the sense of the
complete causality requirement, or would a statistical residue remain? ...
I would be very unhappy to renounce complete causality.” That displea-
sure prevented Einstein from ever accepting quantum theory as a complete
description of Nature.

Another novel aspect of Einstein’s work was that it brought out the fact
that photons carry linear momentum hv/c as well as energy hv .8 This part
of Einstein’s work of 1917 is not nearly as widely known as the derivation
of the Planck spectrum just reviewed. According to Einstein, however, “a
theory [of thermal radiation] can only be regarded as justified when it is able
to show that the impulses transmitted by the radiation field to matter lead
to motions that are in accordance with the theory of heat.” Einstein showed
that the momentum transfers accompanying emission and absorption are
consistent with statistical mechanics if the thermal radiation follows the
Planck distribution.

Consider the interaction with radiation of an atom initially at rest in
the laboratory frame of reference. After a time 6t it acquires some linear
momentum A due to emission and absorption of radiation. Each emission
or absorption process imparts to the atom a linear momentum A;, which
may be positive or negative. If n emission and absorption processes occur
during the time interval 6, then -

A= Zn: by (1.88)

i=1

and, assuming the ); to be independent random variables of zero mean,

(a%) = gu.?) ~3 (h‘;’°)2 n (1.89)

if we associate with each process of emission or absorption a momentum
transfer (photon momentum) fiw,/c. We have also included a factor of 1/3
because, as in the Einstein—Hopf model, the atoms are assumed to move
in only one direction. The average number n of emission and absorption
events occuring in the time interval 6t is given, according to the foregoing
analysis, by

n= NyAxnét + (N1 + Nz)Blgp(w,,)6t, (190)

6 The term photon for radiation quanta was coined in 1926 by Gilbert Lewis, a physical
chemist.
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so that
-1 1 hwo 2
(6)7(a?%) = 3 ( - ) [N3A21 + (N1 + N2)Bi2p(w,))
2 (hw, 2
= 'g p N1312p(wo), (191)

where we have used the equilibrium condition (1.81).

This result shows that an atom interacting with radiation will continu-
ally gain kinetic energy unless there is some retarding force to maintain the
fixed average kinetic energy (%mvz) = %kT demanded by statistical me-
chanics. The origin of this retarding force is the same as in the Einstein—
Hopf model, except that now we must express it in terms of quantities
characteristic of an atom rather than a classical dipole oscillator. As shown
in Appendix B, this force is given by the formula
hw,

F=-Rv=— ( - ) (N1 — N2)By, [p(wo) _ o dp ] v.  (1.92)

3 dw,

As in'the classical Einstein—-Hopf model the condition for thermal equilib-
rium is (A2)/6t = 2RkT or, from (1.91) and (1.92),

_wodp _ (hw M
p(wo) 3 dw,, - (3kT) <N1 — Nz) p(wo)
Fw,/3kT
[m] p(wo). (1.93)

'The solution of this equation is the Planck spectrum. Thus Einstein showed
that in his theory of thermal radiation, “the impulses transmitted by the
radiation field to matter lead to motions that are in accordance with the
theory of heat.”

1.9 Discussion

In Section 1.6 we alluded to the fact that an oscillator (or atom) in its
ground state does not absorb zero-point electromagnetic radiation. The
reason for this is discussed in Chapter 4. The question arises whether an
excited atom undergoes stimulated emission due to the zero-point field.
Let us suppose that it does. Then, according to the Einstein theory
described in the preceding section, the rate at which an atom in level 2 is
stimulated by the zero-point field to drop to level 1 should be given by

7. y(e) hw?
(N2)ltimulnted emission — —B21po(wo)N2 = _B21 (21::23) N2’ (194)
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where we have used equation (1.57) for the spectral energy density po(w)
of the zero-point field. Using (1.85), therefore, we have
An

1
= - ZZ2 ) Ny = —<AnN.
By (2321) 2 5 A2z

(N 2)S:i)mulau-:d emission
1
2
Thus we can almost interpret spontaneous emission as stim?lla.ted e‘mi.ssion
due to the zero-point field — almost because we calculate within Fhl.s inter-
pretation only half the correct A coefficient for spontaneous emission. In
spite of this discrepancy, one repeatedly hears and reads sta.tements to the
effect that “spontaneous emission is induced by the zero—pom.t electromag-
netic field.” We attempt to clarify the situation in the following §ha‘,pters.
The result (1.95), however, does suggest that spor'ltaneogs emission l.xas
something to do with zero-point radiation, even if it is not simply emission
induced by this radiation. Another way to infer this is to use the equation

Ny By

(1.95)

(N 2)spontaneous emission *

=1 + —plWo), (196)
A PR
which follows from (1.81), in equation (1.93):
w, dp hw, B2 ]
-2 = =1 - 0 Wo
o) -2 = e 1 2B pfen)| ple)
a2 9 Agy ] 1 97)
= — ——p(wo)| - )
e O R V. )

The identity (1.85) shows that this result is equivalent to (1:61). But now it
is evident that the second term in brackets is associated with spontaneQus
emission. In other words, the particle term in the Einstein ﬂuctuat.mn
formula is a consequence of spontaneous emission. The fact thz?.t the particle
term may also be related as in Section 1.7 to the zeFo-.pomt field thus
suggests again some connection between spont‘aneous emission and the zero-
point field. This connection will be explored in Chapter 4. '
We noted in Section 1.7 that the particle term was the noncl‘assmal
feature of the Einstein fluctuation formula. In fact th'is term, which we
have just related to the existence of spontaneous emis§lon anfi z‘ero—.pomt
radiation, led Einstein in 1917 to conclude that “Outgoing radiation in the
form of spherical waves does not exist.” ‘ ‘
To understand this conclusion, let us first note that the recoil associ-
ated with spontaneous emission contributes only to the particle 'terrr.1 in
(6t)_1(A2), not to the wave term. Now the wave term has contributions
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from both absorption and stimulated emission (neither of which contributes
to the particle term), and it is obvious from the classical wave picture that
absorption and stimulated emission must cause the atom to recoil, sim-
ply because the field carries linear momentum. But why does spontaneous
emission not contribute likewise to the recoil associated with the wave term?

The reason is simple. In a classical wave description of spontaneous
emission, the radiation is a wave with inversion symmetry about the posi-
tion r = 0 of the atom. Thus any recoil associated with radiation propagat-
ing in the direction r from the atom is cancelled by the contribution from
the radiation in the direction —r. The classical wave pattern associated
with spontaneous emission is, loosely speaking, “everywhere at once,” and
its inversion symmetry precludes any possibility of atomic recoil. In the
quantum-electrodynamical description of spontaneous emission, however,
the radiated field amplitude has the same spatial distribution predicted
classically, but it represents a probability amplitude for directional photon
emission. The expectation value of the net recoil vanishes because there is
no preferred direction of emission, just as predicted by the classical wave
picture. But contrary to the classical wave picture, there is a nonvan-
ishing mean-square momentum transfer to the atom that, for radiation of
frequency w,, is (hwo/c)?. It is in this sense that the classical picture of
outgoing waves fails.

It is perhaps worth noting that the recoil of a spontaneously emitting
atom is an experimental fact, as are the recoils associated with the absorp-
tion and stimulated emission of radiation. In absorption the recoil is in
the same direction as the incoming (absorbed) photon, whereas in stimu-
lated emission the recoil is in the direction opposite to that of the incoming
(stimulating) photon; these are simple consequences of the conservation of
linear momentum. In spontaneous emission the direction of recoil cannot
be predicted, since the direction of the emitted photon is unpredictable.
Recoil accompanying spontaneous emission was inferred experimentally by
Frisch in 1933, and has in recent years been confirmed more accurately.

We conclude the present discussion with a tribute to the unsung experi-
mentalists who so painstakingly measured blackbody spectra: when Planck
fit his formula to their data he obtained h = 6.55 x 10~%7 erg-sec for his
constant, within 1% of the modern value h = 6.63 x 1027, For the Boltz-
mann constant Planck obtained & = 1.35 x 10~ %erg/K, the modern value
being 1.38 x 10~ 16. (Since the universal gas constant R = N4k was known,
Planck also obtained an accurate estimate of Avogadro’s number.)
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1.10 Specific Heats

It was Maxwell, in 1859, who first suggested that classical physics was
wrong. What he later called “the greatest difficulty yet encountered by the
molecular theory” had to do with the theory of specific heats of gases.

The specific heat of a solid will in general have contributions from both
electronic and vibrational degrees of freedom. Except at very high tem-
peratures, however, the electrons are all in their ground states and make
no contribution to the specific heat. Then the N atoms making up the
solid may be regarded as inert vibrators, and under the approximation
of harmonic vibrations the total energy for the 3N degrees of freedom is
U = 3NkT. Thus dU/dT = 3Nk, and the specific heat per mole is

¢y = 3N4k = 3R =~ 6 cal/mole-K (Dulong—Petit law). (1.98)

This classical prediction is the Dulong-Petit law, named after the experi-
menters who observed it in 1819 for 12 metals and sulfur at room temper-
ature. As the temperature is decreased, however, cy is found to decrease,
and ¢, — 0 as T — 0, contradicting the classical prediction (1.98) based
on the equipartition theorem.

It was found in 1840 that the specific heat of diamond is smaller than
6 cal/mole-K even at room temperature. This anomaly was first explained
by Einstein in 1907. Einstein argued that Planck’s equation (1.29) gives
the average energy in thermal equilibrium of each (harmonic) vibrational
degree of freedom, so that”

3Nhv

U=—mr 3 (»1.99)
and
0 2 8IT
Cy = 3R (T) m (1100)

is the specific heat per mole, where 8 = hv/k is the “Einstein temperature,”
the one adjustable parameter in Einstein’s theory. For high temperatures
(T >> 6), equation (1.100) reduces to the Dulong—Petit law. At low tem-
peratures, however, c, is less than the Dulong-Petit value, and in particular
¢, — 0 as T — 0. From a fit to experimental data Einstein deduced that
9 ~ 1300 K for diamond. A substance with such a large value of 6 will have
a small value of ¢, even at room temperature.

7Einstein presented a derivation of equation 1.29) using in essence the quantum-
statistical formula U = E:o-o nhye—"hv kT/z:n-o e~ nhv /AT,
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In 1913 Einstein and Stern, in the paper discussed in connection with
the blackbody problem in Section 1.6, turned their attention to the spe-
cific heats of gases. Their work was motivated by the recent report by
Eucken that the molar specific heat for H, at room temperature was about
5 cal/mole-K, but about 3 at T =~ 60 K. Einstein and Stern suggested
that this behavior was a consequence of molecular rotations and zero-point
energy.

The energy of a dumbbell rotator with moment of inertia I and rota-
tional frequency v is %I (27v)2. Suppose, following Einstein and Stern, that
in thermal equilibrium this energy is given by the Planck equation (1.29):

1 2 hv
U= -2-1(27”/) = mnT 1 (1.101)

The rotational contribution to the specific heat is then
r = N — —— 2 - - < av
¢ = Nagm = Na——— = Na (4n°1v) = ( P )deT , (1.102)

where p = 2721. From equation (1.101) it is clear that v is a function of T,
dv /dT follows by differentiation of both sides of that equation with respect

to T,
v _v[ kT 17
aa-T| T pvi+hv] (1.103)
and it follows from (1.102) that
2p1? kT -1
r — R
¢ - [1 + oy hu] , (1.104)

where v(T) is found by solution of (1.101). The rotational specific heat
calculated in this way for the example p = 2.9 x 10~%° g cm? considered
by Einstein and Stern is shown in Figure 1.1. The predicted dependence
of the specific heat on temperature is quite different from the dependence
observed by Eucken, and in particular the predicted specific heats at low
temperatures are much too large.

Now suppose, however, that equation (1.101) is modified to include
zero-point energy:

hv

1
U= py2 = ——_ehu/kT 1 + -2-h1/. (1.105)

Following the same steps leading from (1.101) to (1.104), it is found that

_ p2p? kT -1
Cr = R k,I, [1 + pl/2 — h2/4p] y (1106)
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Figure 1.1: Experimental data (x) of Eucken on specific heat of molecular
hydrogen; specific heat computed by Einstein and Stern (a) without zero-point
energy [equation (1.104)] and (b) with zero-point energy [equation (1.106)].

where v(T) is obtained by solving (1.105) for v in terms of T The resulting
cr plotted in Figure 1.1is seen to agree very well with Eucken’s observations.
At high temperatures ¢, asymptotes to R =~ 2 cal/moleK, but at low
temperatures ¢, — 0.

Finstein and Stern thus gave a very interesting interpretation of Eu-
cken’s observation that the specific heat of Hy decreased from 5 cal/mole-K
to 3 as T' decreased from 300 to 60 K: because of zero-point energy, the
rotational contribution to the specific heat decreases from 2 cal/mole-K to
0 as T decreases. That is, the existence of zero-point energy causes the ro-
tational specific heat of a gas to “freeze out.” Einstein and Stern concluded
that “The existence of a zero-point energy of size -;-hu [is] probable.”

The Einstein-Stern explanation turned out to be incorrect. The rota-
tional energy levels of a diatomic molecule are given in quantum theory by
E; = BJ(J + 1), where B is a constant characteristic of the molecule and
J=0,1,2,...Therefore a molecule has no zero-point rotational energy. On
the other hand, Einstein and Stern were correct in their hypothesis that the
observed decrease of specific heat with temperature of Hy was connected to
molecular rotations.

According to quantum mechanics, the fact that ¢, and ¢, » 0asT — 0
is due simply to the fact that discrete energy levels are associated with the
internal degrees of freedom of a molecule. If kT is small compared with the
energy separation between the lowest and first-excited energy levels, there
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is a high probability that only the lowest-energy state is occupied, and so
the specific heat corresponding to that degree of freedom is “frozen out” in
the sense that dU/dT decreases with T and approaches zero as T — 0.

As a consequence of the Einstein—Stern paper, the concept of zero-point
energy began to take on greater importance, especially among physical
chemists. This was due in part to the growing interest at the time in low-
temperature phenomena. Stern himself in 1913 used zero-point energy in
a calculation of the vapor pressure of solids.

1.11 X-Ray Diffraction

A.n important question, prior to the first experiments, was whether x-ray
diffraction would be spoiled by the thermal motions of the atoms in crystal
lattices. It was first shown by Debye in 1914 that these thermal motions
basically just reduce the intensity of a diffracted beam from that predicted
for an idealized lattice of stationary atoms. Debye also showed that if
Planck’s zero-point energy were real, there should be such a reduction in
intensity even as T'— 0. We now know that zero-point motion can indeed
have a significant effect on x-ray diffraction. In this section we will briefly
sketch a derivation of the so-called Debye—Waller factor that accounts for
the motion of lattice atoms.

Consider the field far from a collection of identical scatterers. We assume

the nth scatterer at r, has strength p, and write the total scattered field
at r as

Ey(r) = Pn__ -iw(t-|r=Tal)/c _ o—iwt Pn ik|r-1,|
=2 2l

. (1.108)
For distances large compared with the dimensions of the scattering volume
we have

e—rp,| = [rP-2r-r, +r2]Y2 = [l = 2r v, /72 + r2 /P2
rll—r-r,/r?]=r—r-r,/r, (1.109)

R

s0 that k!r—r,,| = kr—(kr/r)-r, = kr—k-r, in the exponential in (1.108),
where k is the wave vector of the (elastically) scattered wave. Thus

~l —iw(t-rfc -iK-
Eu(r) = —e= 0193 p ek Tn (1.110)

r
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We take the strength p, of the nth scatterer to be proportional to the field
E'oe"k"'r" (k, = k) incident upon it: p, = ane'k"'r" and

Ey(r) = fr'-Eoe-"(‘“-’">2e-‘K'rn , (1.111)
n

where K =k — k,. _

For a periodic lattice of scatterers the scattered ﬁeld. (1.111) is nonvan-
ishing only in directions such that K belongs to the reciprocal lattice. For
a one-dimensional lattice, for instance, this means that Kd = 2xn, where d
is the lattice spacing and n is an integer. Since K = (k2 + k2 — 2k, - k]!/? =
[2k2 — 2k2 cos 20]/2 = 2k sin § = (47/))sin g, the condition that K belongs
to the reciprocal lattice is just the Bragg condition, 2dsinf = nA, where
20 is the angle between the incident and scattered (diffracted) waves. .

Now let us take into account the thermal motion of the atoms, replacing
the preceding r, by r, +u, where u represents a displacement from a fixed
lattice site. Then

S K Ky iKore (1.112)
n

n

We are interested in the average of e~ KWU 55 4 undergoes thermal motion:
. 1 1.,
(e"'K'u) =1-iK-(u)— 5((K ) +..=1- glﬁz(uz) +... (1.113

since (u) = 0. The two terms shown explicitly are the ﬁrst two terms of
the Taylor series for exp[—K2(u?)/6]. In fact if the oscillations of u are
assumed to be harmonic we have
(e KWy = e~ KAHuN/ (1.114)
and $mw?(u?) = kT, where m and w, are the mass and frequency of the
harmonic oscillations; for simplicity we assume the elastic restoring forc.e
is the same in all directions. Thus the thermal fluctuations in the atomic
positions cause the diffracted beam to be reduced in intensity by the factor

|(e-iK~U)|2 = C—ZW — e-K’kT/me:' (1115)

This is called the Debye—Waller factor. Our classical hand-waving deriva-
tion gives the correct order of magnitude for this factor.

But the classical model of lattice vibrations breaks down, of course, at
low temperatures. In particular, as T — 0 there is a nonvanishing (u?)
associated with zero-point energy:

mw) (u?) = 3(%’:%), (1.116)
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so that .
W = ¢ R 2mwe for T 0. (1.117)

This gives the correct order of magnitude for the zero-temperature Debye—
Waller factor.

1.12 Molecular Vibrations

Direct evidence for the reality of zero-point energy was provided by Mul-
liken in 1924. Consider the vibrational spectra of two diatomic molecules
differing only by having different nuclear isotopes. The masses of these
two vibrators are then different and consequently so are their vibrational
frequencies. For relatively heavy molecules these differences are small but
readily observable. According to quantum mechanics each molecule has
vibrational energy levels given by Ep = hw[(n + 1) — z.(n + 1)? + ye(n +
%)3+...], where the constants w, z., ¥., ... are characteristic of the particular
molecule, n = 0, 1, 2,..., and the zero-point contributions are included. The
vibrational frequencies are given by |E,, — E,s|/h. Mulliken studied the two
molecules B1°0O'® and B''!0'6. He found that a good fit to the emission
spectra could be obtained only if zero-point energy were included, or in
his words, “if one assumes that the true values of the vibrational quantum
numbers are not n and n’ but each % unit greater ... It is then proba-
ble that the minimum vibrational energy of BO (and doubtless of other)
molecules is % quantum.” It is worth noting that Mulliken reached this con-
clusion based on his spectroscopic data, before Heisenberg (1925) derived
the zero-point energy of a harmonic oscillator from matrix mechanics.

1.13 Summary

Zero-point energy first appeared in Planck’s “second theory” of blackbody
radiation. The concept was quickly adopted by Einstein and Stern, who
showed that it could be used to derive the Planck spectrum from largely
classical considerations. They also showed that rotational zero-point energy
might account for the observed decrease with temperature of the specific
heat of molecular hydrogen. None of these ingenious theories turned out to
be quite correct from a modern perspective.

Zero-point motion played no role in Einstein’s epiphanic paper of 1917
in which he derived the Planck spectrum using his A and B coeflicients.
The great simplicity of Einstein’s derivation, perhaps, ended speculations
about the role of zero-point energy in the blackbody problem. However, we
have seen that zero-point energy of the electromagnetic field has something



32 Zero-Point Energy in Early Quantum Theory

to do with the A coefficient for spontaneous emission, although it cannot
be regarded as the sole “cause” of emission. The role of the zero-point
electromagnetic field in spontaneous emission and other electromagnetic
processes will be discussed in much greater detail in the following chapters.

We have described how zero-point energy appeared and was used during
the development of quantum theory.® Although interest in the concept in
connection with blackbody theory declined after Einstein’s 1917 paper, it
was by no means abandoned. In particular, direct spectroscopic evidence
for the reality of zero-point energy was provided by Mulliken in 1924, just
months before it appeared so naturally in the quantum formalism estab-
lished in 192526, and long before it was to become central to the world-view
of modern physicists.
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Chapter 2

The Electromagnetic
Vacuum

In five minutes you will say that it is all so absurdly simple.
— Sherlock Holmes, “The Adventure of the Dancing Men”
Arthur Conan Doyle

2.1 Introduction

The quantum theory of the free electromagnetic field in the absence of any
sources was formulated by Born, Heisenberg, and Jordan (1926) in one of
the founding papers of quantum theory. The first application was made by
Dirac (1927), who treated the emission and absorption of radiation. The
new quantum electrodynamics (QED) predicted a fluctuating zero-point or
“vacuum” field existing even in the absence of any sources. In this chapter
we consider the quantization of the electromagnetic field, with particular
emphasis on the vacuum state.

According to contemporary physics the universe is made up of matter
fields, whose quanta are fermions (e.g., electrons and quarks), and force
fields, whose quanta are bosons (e.g., photons and gluons). All these fields
have zero-point energy. The oldest and best-known quantized force field
is the electromagnetic one. It is important for us to understand the main
features of the quantized electromagnetic field, not only because quantum
clectrodynamics is “the best theory we have,” but also because it is in many
ways characteristic of all quantum field theories.
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2.2 The Harmonic Oscillator

A monochromatic electromagnetic field is mathematically equiv?,lent to'a
harmonic oscillator of the same frequency. Before shOW}ng this we will
briefly review the harmonic oscillator in quantum fnechamcs. _
The Hamiltonian has the same form as in classical mechanics:
1
H=p2/2m+—2-mw2q2, (2.1)

where now ¢ and p are quantum-mechanical operators in a Hilbert space.
The Heisenberg equations of motion have the same form as the classical

Hamilton equations:
¢ = (ih)"*[g, H] = p/m, (2.2)

p = (ih)~L[p, H] = —mw?q. (2:3)

These follow from the commutation rule [g,p] = qp —P1 = th. We define
the (non-Hermitian) operator

1 .
a= m(p — imwq) (24)
m
and its adjoint 1
af = m(p + imwq), (2.5)
or equivalently
q= i 2::1(4) (a - Gt), (26)
= m;iw (e + aT). (2.7)

From [g, p] = ih it follows that
[a,al] = 1. (2.8)

Equations (2.6)~(2.8) allow us to write the Hamiltonian (2.1) in the form
1
H= %fu.u(aaJf + ata) = hw(aTa + -2-) . (2.9)

The energy levels of the harmonic oscillator are thus determined by the
eigenvalues of the operator N = ala. We denote the eigenvalues and (nor-
malized) eigenkets of N by n and |n), respectively:

N|n) = n|n). (2.10)
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Now (n|N|[n) = (nlataln) is the scalar product of the vector ajn) with
itself. It then follows from (2.10) that n{n|n) = n is real and positive.

Consider the effect on the vector a|n) of the operator N. Obviously
Na|n) = (aN + [N, a])|n) = na|n) + [N,a]|n). But (2.8) implies [N, a] =
—a, and therefore Na|n) = (n—1)a]n). In other words, if |n) is an eigenstate
of N with eigenvalue n, then a|n) is an eigenstate of N with eigenvalue
n—1: a|n) = C|n — 1). By taking the norm of both sides of this equation
we obtain |C|? = n, and without any loss of generality we can choose the
phase such that C = y/n . Thus

ajn) = v/njn - 1). (2.11)
We find similarly that

alln) = Vo ¥ 1jn +1). (2.12)

For obvious reasons a and al are called lowering and raising operators.
We have already noted that the eigenvalues n > 0. But equation (2.11)
shows that we can generate eigenstates with lower and lower eigenvalues
by successive applications of the lowering operator a. Consistency then
requires that a|n) = 0 for n < 1, and (2.11) indicates that this is satisfied
only for n = 0. The eigenvalues n of N = ala are therefore zero and all

the positive integers. That is, the energy levels of the harmonic oscillator
are given by

1
E, =(n+§)hw, n=0,1,2,.. (2.13)

Let us briefly connect this operator approach to that based on the
Schrodinger equation in the coordinate representation. From (2.11) we
have al0) = 0, or (p— imwq)|0) = O for the ground state |0). Thus
(ql(p — imwq)|0) = (q|p|0) — imwq(q|0) = 0. Now (q|0) is the wave func-
tion ¥o(q) and (q|p|0) = (h/i)0%o/dq, so that

(?58; — imwq)Yo(g) = 0 (2.14)

or Po(q) = (mw/wh)!/4e=mw9"/2h when normalized such that [ dg|yo(q)|?
= 1. The excited-state eigenfunctions ¥,(¢) may be obtained by applica-
tion of af according to (2.12): |n) = (n!)_1/2(at)"|0) and

Un(@) = {aln) = () 2@mha) Xl (p + i) 0)
= [@mh) a2 5o+ imon)do(o)

= (@) - 562)%"”2, (2.15)
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where £ = (mw/h)*/%q. These eigenstates are proportional to e~ 12H . (€),
where H,, is a Hermite polynomial of degree n.

Various properties of the harmonic oscillator can be worked out using

either the raising and lowering operators a and al or the eigenfunctions
¥n(q). For instance, we find that (nlgln) = (n|pln) = 0 and

(nlgtln) = = (nl(a - = k3 (210

(nfp?ln) = mhiw(n + %), (2.17)

since (n|m) = 6nm. (Recall that eigenkets corresponding to different eigen-
values are orthogonal in the case of a Hermitian operator like ata.) Thus
AgnApn = (n + 3)h, where (Agn)? = (nlg®|n) — (n|qn)?. This is con-
sistent with the general uncertainty relation AgqAp > /2 and shows that
the ground state of the harmonic oscillator is a state of minimal uncer-
tainty product. In other words, the ground state is a coherent state of the
harmonic oscillator.

2.3 A Field Mode Is a Harmonic Oscillator

We will now take the most elementary route to the quantization of the elec-
tromagnetic field. The first step is to show that a field mode is equivalent
to a harmonic oscillator.

The Maxwell equations for the “free” field, i.e., the field in a region
where there are no sources, are

V.E=0, (2.18)
v.B=0 (2.19)
10B
10E
vxp=iZ (2.21)

We introduce the vector potential A by writing B = V x A. Since v
(Vx A) =0, (219) is automatically satisfied. Equation (2.20) implies
E = —(1/c)0A /6t — V¢, where ¢ is the scalar potential. From (2.21) we
have

10°A _
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in the Coulomb gauge defined by V - A = 0 and, in the absence of any
sources, ¢ = 0. Obviously (2.18) is then also satisfied. Thus we can ob-
tain a solution of the free-space Maxwell equations by solving (2.22) for

tx'le‘ Coulomb-gauge vector potential subject to appropriate boundary con-
ditions.

Separation of variables gives monochromatic solutions

A(r,t) = a(t)Ao'(r) + a*(t)AL(r)
a(0)e™* Ay(r) + a*(0)e’ AL (r), (2.23)

where A, (r) satisfies the Helmholtz equation,
VA () + k2Ao(x) =0 (k=w/c), (2.24)

and q(t) satisfies a(t) = —w?a(t). The electric and magnetic field vectors
are given by

E(r, 1) = —[&(t) Ao(x) + 4 (A1) (2.25)

B(r,) = a(t)V x Ao(r) +a*(t)V x A%(r), (2.26)

and the electromagnetic energy is proportional to
1.
/dar(E2 +B%) = ga(t‘)2 / d3rA,(r)?
1. * ()2 * 2.
+ i@ [ Erazey + Slap [ EriadoP
+ a(t)z/dsr[V x Ao(r)]® + a'(t)2/d3r[V x A(r)]?

+ 20a(t)? / $r|V x Ao, (2.27)

We show in Appendix C that we may take

/ Br[V x Ag(r)]? = k? / Pray(r)?, (2.28)

with similar expressions for the terms involvin

: g [V x A%(r))? and |V
'Ao(r)lz in (2.27) We also note that &(t)? = —w?a(t)?, sinceoo'g(t); = —-i(.«.)lat(t;<
T'hen (2.27) simplifies to .

_ 1 [ 8 p2 k?
Hp = sx/d r(E? +B?) = 5;|a(t)|’, (2-29)
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where, without any loss of generality, we assume the “mode function” A,(r)
is normalized such that

/ PriAm)? = 1. (2.30)
Define the real quantities

o(t) = ——=[a(t) — "), (2.31)

cViar
plt) = 7=l

in terms of which equation (2.29) is

alt) + o* (t)), (2.32)

1
e = 107 4. 239

The notation suggests that our field mode of frequency w is mathematically
equivalent to a harmonic oscillator of frequency w. To prove this we must,
of course, show that ¢ and p are indeed canonically conjugate coordinate
and momentum variables. But this is trivial: from the definitions (2.31)
and (2.32) and & = —wa, we have ¢ = p and p = —w?q, which are the
Hamilton equations that follow from the Hamiltonian H.

2.4 Quantization of a Field Mode

To describe a field mode quantum mechanically, we simply describe the
equivalent harmonic oscillator quantum mechanically. Since the oscillator
with Hamiltonian (2.33) has unit mass, we introduce raising and lowering
operators a and af using (2.6) and (2.7) with m = 1. Comparing with (2.31)
and (2.32), we see that this quantization procedure is equivalent to replac-
ing the classical variable a(t)/ ¢/47 by the quantum-mechanical operator
(h/2w)/2a(t), or a(t) by (27rhc2/w)1/2a(t) and o*(t) by (27|'hc2/w)1/2a'r @®).
That is, except for trivial constants that depend upon the arbitrary nor-
malization chosen for the mode function, a(t) and a*(t) in the classical
theory are replaced by the lowering and raising operators a(t) and af (1),

respectively, in quantum theory.
The classical vector potential (2.23) is thus replaced by the operator

whc? 2
A(r,t)=(2 :‘ ) [a(t)Ao(r) + af (A3 (T)), (2.34)

Quantization of a Field Mode 41

a.nd. the operators corresponding to the electric and magnetic fields are
similarly

E(r, t) = i(2rhw)2[a(t)Ao(r) — ol () AZ(T)], (2.35)

Be= (

The Hamiltonian (2.33) for the quantized field mode is now obviously equiv-
alent to

27hc?
w

1/2
) [a()V x Ao(r) +af 1)V x AZ(X)].  (2.36)

Hy = hw(ata + %) (2.37)

The energy eigenvalues of a field mode of frequency w are given by equation
(2.13). The integer n is the number of energy quanta or photons in the field
'mode described by the state |n). The vacuum state |0) has no photons, but
it nevertheless has an energy %hw. The quantum theory of radiation )thus
predicts the existence of a zero-point electromagnetic field. In the vacuum
state, and in all stationary states |n), the expectation values of the electric
and magnetic fields vanish: '

-~

(E(r,1)) = (B(r,t)) = 0, (2.38)

since (nlalrf) = 0. This means that the electric and magnetic field vectors
fluctuate with zero mean in the state |n), although the field has a definite
nonfluctuating energy (n + % )hw. : ’

Consider the expectation value of the square of the electric field. From
(2.35) this is given by

(B2r,t)) = —(2rhw)[(a®(1))A2(r) - (a(t)al (2) + al (B)a(t))
x |Ao(r)| + (af (1)) A%(r)?]. (2.39)

In(tihe state |n) we have (a%) = (ah) =0, (aaT+ata) = (2ata+1) =2n+1
an ,

(E*(x, 1)

1
(n+ -2—)47rhc..)|Ao(r)|2
= 4mhw|Ao(r)|®n + 27hw|A(r)[?
= 4rhw|Ao(r)|*n + (E%(x))o. (2.40)
From the first terrp on the right we can begin to understand how the quan-
tum theory of radiation resolves the “paradox” of the wave-particle duality

o.f light, for this term, which is a measure of the “intensity” (energy den-
sity) of the field at r, has both wave and particle factors. The factor n is
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the number of photons in the field, whereas the factor |Ao(r)|? gives the
same spatial dependence for the intensity predicted by the class.lcal wave
theory. Even in the case of a single photon (n = 1), the classical wave
theory gives the same spatial dependence as quantun} 'theo.ry ttor t.he in-
tensity, but this pattern represents the relative probability distribution for
finding the photon. The detection of a single photon does not Produce‘: the
spread-out classical intensity pattern IAo(r)|2.‘ Instead there is ;e.latlvely
high probability of detecting the photon at points whzere |Ao(r)|* is la.rige,
and low probability where |Ao(r)|? is small. If [Ao(r)l ='0, the probability
of detecting the photon at r is zero. The wave and Partlcle aspects.of the
field are thus reconciled by this association of a particle (photon) with the
classical (wave) intensity pattern. Comparing (2.25) and (2:26) to (2.35)
and (2.36), we can say that the spatial pattern of‘ the field is e)sactly' the
same as predicted classically: the quantum mechanics of the field is entirely
contained, as it were, in its time dependence.

Quantities like (E™(r,t)) with m > 9 are also easy to calculate. Sup-
pose, for simplicity, that A%(r) = Ao(r), so that

E(r,t) = i(2rhw)*[a(t) — af ()]Ao(r) = (4mw?)H2q(t)Ao(x).  (2.41)

. . —wd?lh
Then from the probability distribution [¥a(g))? = (w/wh)ll 2? wg’ /% for a
ground-state harmonic oscillator of unit mass, we easily obtain the proba-
bility distribution

P[E(x, )] = [2n(E*(x))o]"/? exp [-E*(r, )/ 2({E* ()] (2.42)

for the electric field in the vacuum state |0). Thus (E™(r,t))o = 0 for odd
m and

(Em(r,t)0 = [27(E*()]"/? /0°° dEE™ exp [~E*[2(E*(r))o]

g™/ 2g=1/21 (-nl—;——l) (Ez(r))g'/2 (m even). (2.43)

Similar results, with the appearance of Hermite polynomials Hy, are found
for the expectation values of field powers in photon states |n). .

What is the physical significance of these vacuum—sl?ate. expeclztatlon val-
ues, and in particular of (E2(r))o? One thing they indicate is tha:t F,he
electromagnetic vacuum is a stationary state of the field with statistical
fluctuations of the electric and magnetic fields. As far as mt'aasurer'nents
are concerned, however, it is often argued that the entilje universe is ev-
idently bathed in a zero-point electromagnetic field, which can add only
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some constant amount to expectation values, as in equation (2.40). Phys-
ical measurements will therefore reveal only deviations from the vacuum
state. Thus the field Hamiltonian (2.37), for example, can be replaced by

Hy — (0|Hpl0) = -;-ﬁw(aat + ata) _ %ﬁw
= %hw(2afa +1)- %hw
= hwala (2.44)

without affecting any physical predictions of the theory. The new Hamil-
tonian (2.44) is said to be normally ordered (or Wick ordered), the raising

operator at appearing to the left of the lowering operator a. The normally
ordered Hamiltonian 1s denoted : Hg:, 1.e.,

:Hp: = :—;-Tuu(aa't + afa): = hwala. (2.45)

In other words, within the normal ordering symbol we can commute a and™
af. Since zero-point energy is intimately connected to the noncommutativ-
ity of a and at, the normal ordering procedure eliminates any contribution
from the zero-point field. This is especially reasonable in the case of the
field Hamiltonian, since the zero-point term merely adds a constant energy
which can be eliminated by a simple redefinition of the zero of energy. More-
over, this constant energy in the Hamiltonian obviously commutes with a
and a! and so cannot have any effect on the quantum dynamics described
by the Heisenberg equations of motion.

So the argument goes. However, things are not quite that simple, for in
general relativity the zero of energy is not arbitrary. Furthermore we shall
see that it is possible to attribute measurable effects, such as the Casimir
force and the Lamb shift, to changes in zero-point energy. And finally, as
discussed in Section 2.6, the zero-point field is not eliminated by dropping
its energy from the Hamiltonian.

2.5 The Field in Free Space

The generalization of the quantization procedure to a multimode field is
straightforward. In this section we consider the field in free space with no
physical boundaries, in which case the number of allowed modes is infinite.

Obviously the field intensity for infinite free space should be independent
of position so that, from (2.40), |Ao(r)|? should be independent of r for
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each mode of the field. Of course A,(r) must still satisfy the Helmholtz
equation (2.24). A mode function satisfying these conditions is obviously
A, (r) = eke‘k'r, where k - e} = 0 in order to have the transversality
condition V - A(r,t) = 0 satisfied for the Coulomb gauge in which we are
working.

We also wish to normalize our mode functions according to equation
(2.30). To achieve the desired normalization we pretend that space is di-
vided into cubes of volume V = L3 and impose on the field the periodic
boundary condition

A(z+L,y+L,z+L,1) =A(z,y,2,1), (2.46)

or equivalently ) ‘
(ko) by, k2) = _g'(nr’ny,nz)y (2.47)

where each n can assume any integer value. Of course this artificial periodic
boundary condition will be of no physical consequences if L is very large
compared with any physical dimensions of interest. It allows us to consider
the field in any one of the imaginary cubes, and to define a mode function
Ay(r) = v 2eke‘k‘r satisfying the Helmholtz equation, transversality,
and the “box normalization”

/V Bria@)i’ =1, (2.48)

where e} is chosen to be a unit vector.

The unit vector ey, which we take to be real, specifies the polarization
of the field mode. The condition k-ey = 0 means there are two independent
: : _ 2 a2 —
choices for e}, which we call k; and ey,, €k "€y = 0 and ef, =€, = 1.

Thus we define the mode functions

Ay, (r) = V"2, KT (A =1,2), (2.49)
in terms of which the vector potential (2.34) becomes

AN kr | 1 —ikr
Ay, (x,t) = oV [ag, ()™ + akk(t)e lexa (2.50)

or

2rhe? Yz —i(wxt-k-T) 1} iwat-kT)
Ay, (r,t)= oV [ag,(0)e + ap, (0)e lexa
(2.51)
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whert? wi = kc and ay,, aL\ are respectively the photon annihilation and
ctef'itjon operators for the mode with wave vector k and polarization A.
This gives the vector potential for a plane-wave mode of the field. The
condition (2.47) shows that there is an infinite number of such modes. The
linearity of Maxwell’s equations allows us to write

9nhe?\/? k t k
A(r,t) = kZ ( oV ) [ag, (@)™ T + ay,(t)e™* Tlek, (2.52)
p

for the total vector potential in free space.
Using the fact that

3 . * _ <3
/V drAy, () - A, () = & 1. 6an (2.53)

we find from the same sort of analysis as in the preceding section that the
field Hamiltonian is

1
He =Y hwr(af,ap, +3) (2.54)
ka

for the infinity of modes in free space. This is the Hamiltonian for an infinite
number c?f uncoupled harmonic oscillators. Thus the different modes of the
field are independent and satisfy the commutation relations

[aga (D), GL, NOIEXSWINY (2.55)

and [agy (8), aon (8)] = [a]. (1), af, ()] = 0. From (2.52) it follows that

. omhuwy \ . .
E(r,t) = zkz ( ”V“”“> [ag, (£)e KT — aL\(t)e_’k'r]ekA, (2.56)
A

) 27he?\ M/ k f k
B(r,t) = l; ( oV ) lag, ()T — ap, (e Tk x e),. (2.57)
A

It is worth noting that the free-space mode functions (2.49) form a
complete set for transverse vector fields satisfying our periodic boundary
condition. That is, the plane-wave modes A}, (r) form a complete set in
Perms of which any mode of the field may be expanded. This is essentially
just a statement of Fourier’s theorem about the completeness of sines and
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cosines. Of course the Ak)‘(r) are complete only for modes satisfying the
periodic boundary condition, but in a slightly more sophisticated approach
we can work with a complete continuum of plane-wave mode functions in
which the k vectors are not restricted to the discrete spectrum (2.47) (Chap-
ter 10). This has formal consequences such as the replacement of 6?( K in
(2.53) and (2.55) by §3(k — k'), but since it has no physical consequences
here, we will just stick to the periodic boundary condition.
The linear momentum of the field is given classically by P = (1/4=c)

x [, @r(E x B). In the case of the quantized field we use (2.56) and (2.57)
in this expression and obtain, after straightforward manipulations,

1
P= Z hk(a;(v‘ab‘ + 5) (2.58)
ka

Obviously [P, Hr] = 0, so that the linear momentum of the field in the
absence of any sources is a constant of the motion. It is also obvious that
the eigenvalues of P are 3_j, ik(ny,+ 1), where each nisa positive integer
or zero. A stationary state of the free field is thus characterized by the set
of photon numbers {n),}. The state |{nx,}) has a total photon number

2 ko Mk o an energy

1
E = Ehwk(nk)‘ + 5), (2.59)
ka
and a linear momentum
1
P =) hk(ng, + 5) (2.60)
ka
or
E=) huiny, (2.61)
ka
P =) hkny, (2.62)
kx

if the zero-point energy and linear momentum associated with the vacuum
state are discarded. Note that the zero-point momentum Yk %hk in fact
vanishes since for each k there is an equal contribution from —k in the
summation.

We have thus arrived at the quantum theory of the free electromagnetic
field in which stationary states are described by photons of energy hwy and
linear momentum Ak. Since E2—P?c? = h?(w? —k2c?) = 0 for each photon,
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the photons have zero rest mass. The theory also implies that photons
are bosons, i.e., that the stationary states are symmetric with respect to
permutations of identical photons. To see this, note from equation (2.12)
that the n-photon state |n) of a field mode may be written in the form.

atys
In) = ( \/% |0), (2.63)

which is obviously symmetric with respect to any permutations of the n
photons. Of course the boson character of photons is just a consequence of
the commutation rule (2.55), from which (2.63) follows.

The k vector of a photon of mode (k, A) specifies the energy and linear
morper}tum of the photon. The polarization index A is connected with the
intrinsic angular momentum, or spin, of the photon. To establish this con-

nection we first note that the intrinsic angular momentum may be defined
by the formula!

1
M, = — /V &r(E x A). (2.64)

From (2.52) and (2.56) we obtain for M, the expression
y k(al
M, =ih %: k(a0 - aLlak2), (2.65)
A

where the unit vector k = k/k = e}, x ey,. This operator does not

com'mute with at ay,, and therefore a photon number state |n,) is not
an eigenstate of M. To construct simultaneous eigenstates of energAy linear
momentum, and intrinsic angular momentum of a photon we deﬁ,ne the
complex unit polarization vectors

1 .
ek‘+1 = —\/;(ekl + 1ek2), (2.66)

1 ,
e, = \/;(ek1 —iey,), (2.67)

satl.sfylng ei‘m ‘e, = baa’ ei‘(a X ek = iaﬁ&aa:, a = +1. It is
casily seen that, whereas our original polarization vectors ey, with A = 1,2
b

l . .
See, ff)r ms‘tnnce,‘ Heitler (1966), Appendix, Section 1. It is worth noting that (2.64)
s gauge-invariant, since the vector potential is transverse in the Coulomb gauge em-

ployed here, and the transveme part of th ial i
ployed e, an P e vector potential is unaffected by gauge
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correspond to two orthogonal linear polarizations, the new polarization
vectors e, with a = +1 correspond to opposite circular polarizations. We
define the photon annihilation operators for the circularly polarized modes
(k,a) by

1 . .
K41 = _\/;(ah —ia),), (2.68)

1 .
ak,—l = \/-g'(ak1 + ulkz), (269)

in terms of which

M;=h ;l}(a}(’+lak,+l - a;[c,—lak,—l) = Z ahkaLaaka (2.70)

a

and Hr = D ko hwkaT aaka,P =Y ka hkaLaaka. With circularly polar-
ized mode functions, therefore, M commutes with Hr and has the photon
number state |nj ) as an eigenstate with eigenvalue ahk,a = £1. In other
words, the component of the photon spin along the direction of propaga-
tion, the photon helicity, 1s 41 in units of k, which means that a photon is
a boson of spin 1. Ordinarily we will not be concerned with spin and will
employ the linear polarization basis.

2.6 Necessity of the Vacuum Field

The vacuum state |vac) of the free field is defined as the ground state in
which ny, = 0 for all modes (k,A). The vacuum state, like all stationary
states of the field, is an eigenstate of the Hamiltonian but not the electric
and magnetic field operators. In the vacuum state, therefore, the electric
and magnetic fields do not have definite values. We can imagine them to
be fluctuating about their mean values of zero, as discussed in Section 2.4
for the case of a single mode of the field.

In a process in which a photon is annihilated (absorbed), we can think
of the photon as making a transition into the vacuum state. Similarly, when
a photon is created (emitted), it is occasionally useful to imagine that the
photon has made a transition out of the vacuum state. In the words of

Dirac (1927),

The light-quantum has the peculiarity that it apparently ceases
to exist when it is in one of its stationary states, namely, the zero
state, in which its momentum, and therefore also its energy, are zero.
When a light-quantum is absorbed it can be considered to jump into
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this zero state, and when one is emitted it can be considered to jump
from the zero state to one in which it is physically in evidence, so
that it appears to have been created. Since there is no limit to ,the
number of light-quanta that may be created in this way, we must

suppose that there are an infinite number of light-quanta in the zero
state ...

We shall see later that an atom, for instance, can be considered to be

« » M M 3 M
dressed” by emission and reabsorption of “virtual photons” from the vac-
uum.

Thle mo§t .glar?ng characteristic of the vacuum state is that its energy
Yk 35wk is infinite. Let us use (2.47) to make the well-known replacement

The zero-point energy density is thus

1 1 2 1 4
% kE’\ Qhwk = 87['3 /d kihwk = P dkkz(—z-hwk)
—_ h 3
= 33 /dww ) (2.72)

or in other words the spectral energy density of the vacuum field is

huw3
po(w) =553 (2.73)

which is familiar from Chapter 1. The zero-point energy density in the
frequency range from w; to ws is therefore

waq h
d —_— 4_ .4
/ " dopefe) = gt o) (2.74)
‘This can be large even in relatively narrow, “low-frequency” regions of the
spectr.um. In the optical region from 400 nm to 700 nm, for instance
equation (2.74) yields about 220 erg/cm3. ,

A Ip Section 2.4 we noted that the zero-point energy of the field can be
:-lunlnat.ed fx"orp thvﬁs Hamiltonian by the normal ordering prescription. How-
ever, thlS. elimination does not mean that the vacuum field has been ren-
(h-ll-ed ummpqrtant or without physical consequences! To illustrate this
point we consider now a linear dipole oscillator in the vacuum.
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The Hamiltonian for the oscillator plus the field with which it interacts

is )
H= 2—11;(p — %A)’ + imexz + Hp. (2.75)
Of course this has the same form as the corresponding classical Hamiltonian,
and the Heisenberg equations of motion for the oscillator and the field
are formally the same as their classical counterparts. For instance, the

Heisenberg equations for the coordinate x and the canonical momentum
p = mx + eA/c of the oscillator are?

x = (ih)~[x, H] = %(p -2a), (2.76)

b= (i) ![p, H] = ~5-V(p — ZA)? — mulx
= - Lip-La) vi-2a)- (- 2A)

x V x [—%A] — mw?x

=Z(x-V)A+ Z% x B — mw}x, (2.77)
or
mk = p—%A= —%[A—(J':-V)A]+%5c x B — mw?x
= eE+ %5: x B — mw?x, (2.78)

since the rate of change of the vector potential in the frame of the moving
charge is given by the convective derivative A = OA /0t + (x - V)A3 For
nonrelativistic motion we may neglect the magnetic force and replace (2.78)
by

e e 27w hwy 1/2 1
% +wix = —n_l.E = _1; z ( - ) [ag () — oy, (Dle,- (2.79)
ka

As in Chapter 1 we have made the electric dipole approximation in which
the spatial dependence of the field is neglected. The Heisenberg equation

2The Hamiltonian for a charged particle in an electromagnetic field is reviewed in
Chapter 4. In (2.77) we employ the vector generalization of the identity [p, F(q,p)] =
—ihOF[9q. .

3This follows from the general relation iAdAs/dt = [A:, H] + ih0Az /0L,
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for ay, is found similarly from the Hamiltonian (2.75) to be

1/2
dk,\ = —iwkak/\ + e (M:V) X - €k (280)

in the electric dipole approximation. In deriving these equations for x, p,
and ay, we have used the fact that equal-time particle and field operators
commute. This follows from the assumption that particle and field opera-
tors commute at some time (say, ¢ = 0) when the matter—field interaction
is presumed to begin, together with the fact that a Heisenberg-picture op-
erator A(t) evolves in time as A(t) = U t(®)A(0)U(t), where U(t) is the
time evolution operator satisfying ihU = HU, Uf(t) =U-(¢),U(0) = 1.
Alternatively, we can argue that these operators must commute if we are
to obtain the correct equations of motion from the Hamiltonian, just as the
corresponding Poisson brackets in classical theory must vanish in order to
generate the correct Hamilton equations (see also Section 4.2).
The formal solution of the field equation (2.80) is

. 2w 12 . f
1) = —fwyt . /] (1 piwk (t' =) .
ap, (t) = ag, (0)e +ie (hka> /0 dt'ep, - x(t')e , (2.81)
and therefore equation (2.79) may be written
% +wlix = %Eo(t) + -%ERR(t), (2.82)

where

rhwp\ ? ; ;
E.(t) = iz (2 Z k) [ag, (0)e™"** — aL\(O)e“""']ek'\ (2.83)
kx

and
41re ! / > ! 1
Err(t) = -5 Z dt'[ey, - x(t')]ley, coswy(t' —1). (2.84)
kr 70
We show in Appendix D that we may take

2e ..
ERR(t) = 3_(,'3 X (285)
for the radiation reaction field, if the mass m in (2.82) is regarded as the
“observed” mass.
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The total field acting on the dipole has two parts, E,(t) and Err(?).
E,(t) is the free or zero-point field acting on the dipole. It is the ho-
mogeneous solution of the Maxwell equation for the field acting on the
dipole, i.e., the solution, at the position of the dipole, of the wave equation
[VZ — ¢~282/8t?]E = 0 satisfied by the field in the (source-free) vacuum.
For this reason E,({) is often referred to as the vacuum field, although it
is of course a Heisenberg-picture operator acting on whatever state of the
field happens to be appropriate at £ = 0. Egr(t) is the source field, the
field generated by the dipole and acting on the dipole.

Using (2.85) in (2.82), we obtain an equation for the Heisenberg-picture
operator x(t) that is formally the same as the classical equation (1.41):

Xtwix—TX= 7f;l«:o(t), (2.86)

where again 7 = 2¢2/3mc>. But here we have considered a dipole in the
vacuum, without any “external” field acting on it. The role of the “exter-
nal” field in equation (2.86) is played by the vacuum electric field acting on
the dipole.

Classically, of course, a dipole in the vacuum is not acted upon by any
“external” field: if there are no sources other than the dipole itself, then
the only field acting on the dipole is its own radiation reaction field. In
quantum theory, however, there is always an “external” field, namely, the
source-free or vacuum field Eo(t).

According to equation (2.81) the free field is the only field in existence
at ¢ = 0. This defines t = 0 as the time at which the interaction between
the dipole and the field is “switched on.” The state vector of the dipole-
field system at t = 0 is therefore of the form |¥) = |vac)|¥p), where |vac)
is the vacuum state of the field and |#p) is the initial state of the dipole
oscillator. The expectation value of the free field is therefore at all times
equal to zero: (Eo(t)) = (¥|E(t)|¥) = 0 since ay, (0)|vac) = 0. However,
the energy density associated with the free field is infinite:

e - 23 () ()
x (agex (0)a}.,,,(0))
217; 2 (3”_";&) = /0 " dwpo(w). (2.87)

The important point is this: the zero-point field energy in Hr does not af-
fect the Heisenberg equation for a, , since it is a c-number (i.e., an ordinary

Il
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number rather than an operator) and commutes with ap,. We can there-
fore drop the zero-point field energy from the Hamiltonian, as is usually
done. But the zero-point field re-emerges, so to speak, as the homogeneous
solution of the field equation. A charged particle in the vacuum will there-
fore always see a zero-point field of infinite energy density. This is the
origin of one of the infinities of quantum electrodynamics, and it cannot be
eliminated by the trivial expedient of dropping the term >, %hwk in the
field Hamiltonian.

The free field is in fact necessary for the formal consistency of the theory.
In particular, it is necessary for the preservation of commutation relations,
which is required by the unitarity of time evolution in quantum theory:
[2(2), p: (0] = U @)2(Q)U (1), U )= (U )] = U (1)[=(0), p-(O)IU () =
ihU t(t)U (t) = ih. We can calculate [z(t), p;(t)] from the formal solution of
the operator equation of motion (2.86). Using the fact that [ay, (0), aL, ,\,(0)]
= 6?( k,&»:, and that equal-time particle and field operators commute, we
readiiy obtain

[2(), p-(1)] = [2(t), mz()} + [2(¥), %Az ®)] = [2(2), mz(2)]

_ ihe? 8w > dwwt
- 212mc3 3 /0 (w? — w2)? 4 128 (2.88)

in the mode continuum limit (2.71). For the dipole oscillator under consid-
eration it can sensibly be assumed that the radiative damping rate is small
compared with the natural oscillation frequency, i.e., Tw, << 1. Then the
integrand in (2.88) is sharply peaked at w = w,, and*

2ihe? o0 dr 2ihe?w3 T
t),p.(t)] = 3 = )\ —
[2(t), p:(0)] 3rmed e [_oo z2 + 1208 ( 3rme3 ) (ng)

= ih. (2.89)

R

We can appreciate further the necessity of the vacuum field by making the
small-damping approximation directly in (2.86): X = —w?2x(t), X = —w?2x,
and

% + 1wk + wix %Eo(t). (2.90)

Without the free field E,(t) in this equation the operator x(t) would be
exponentially damped, and commutators like [2(t), p.(t)] would approach
zero for t >> (tw?)~!. With the vacuum field included, however, the

{Actually (2.89) follows exactly from (2.88), as may be shown using the residue
theorem.
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commutator is ik at all times, as required by unitarity, and as we have just
shown. A similar result is easily worked out for the case of a free particle
instead of a dipole oscillator (Milonni, 1981b).

What we have here is an example of a “fluctuation—dissipation relation.”
Generally speaking, if a system is coupled to a “bath” that can take energy
from the system in an effectively irreversible way, then the bath must also
cause fluctuations. The fluctuations and the dissipation go hand in hand; we
cannot have one without the other. In the present example the coupling ofa
dipole oscillator to the electromagnetic field has a dissipative component, in
the form of radiation reaction, and a fluctuation component, in the form of
the zero-point (vacuum) field; given the existence of radiation reaction, the
vacuum field must also exist in order to preserve the canonical commutation
rule and all it entails.

The spectral density of the vacuum field is fixed by the form of the
radiation reaction field, or vice versa: because the radiation reaction field
varies with the third derivative of x, the spectral energy density of the
vacuum field must be proportional to the third power of w in order for (2.88)
to hold. In the case of a dissipative force proportional to x, by contrast,
the fluctuation force must be proportional to w in order to maintain the
canonical commutation relation (Milonni, 1981b). This relation between
the form of the dissipation and the spectral density of the fluctuation is the
essence of the fluctuation—dissipation theorem.®

The fact that the canonical commutation relation for a harmonic oscil-
lator coupled to the vacuum field is preserved implies that the zero-point
energy of the oscillator is preserved. It is easy to show that after a few
damping times the zero-point motion of the oscillator is in fact sustained
by the driving zero-point field (Senitzky, 1960). '

The reader may well wonder whether the vacuum field is merely some
sort of formal mathematical artifice of quantum electrodynamics, whether it
really has any unambiguous experimental manifestations. In fact the zero-
point field does appear to be quite “real,” as we shall see in the following
section.

2.7 The Casimir Effect

Casimir showed in 1948 that one consequence of the zero-point field is an
attractive force between two uncharged, perfectly conducting parallel plates
(Figure 2.1). In this section we review a standard calculation of the Casimir
force, and in the following chapter we present a somewhat more physical

SH. B. Callen and T. A. Welton, Phys. Rev. 83, 34 (1951).
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z=0 z=d

Figure 2.1: Two conducting parallel plates experience an attractive force at-
tributable to the zero-point electromagnetic field. This is the Casimir effect.

variation of this calculation. Various Casimir effects, and experimental
evidence for them, are discussed in Chapters 7 and 8.

The physical situation shown in Figure 2.1 leads us to consider a dif-
ferent set of modes than the free-space plane-wave modes we have dealt
with thus far. Consider first the modes appropriate to the interior of a
rectangular parallelepiped of sides L, = L, = L and L,. For perfectly con-
ducting walls the mode functions satisfying the boundary condition that
the tangential component of the electric field vanishes on the walls are
A(r) = Ay(r)i+ Ay(r)j + A:(r)k, where

Ag(r) = (8/V)M%a, cos(k,z)sin(kyy) sin(k, 2), (2.91)
Ay(x) = (8/V)2ay sin(k, z) cos(kyy) sin(k, z), (2.92)
A.(r) = (8/V)/?a, sin(kzz) sin(kyy) cos(k, z), (2.93)
with a? + a2 + a2 =1,V = L*L,, and
k; = %—, ky = %, k, = -1-1-7[, (2.94)
, L,

with ¢, m, and n each taking on all positive integer values and zero. In



56 The Electromagnetic Vacuum

order to satisfy the transversality condition V - A = 0 we also require
koAg + kyAy + kA, = %(ZA, +mAy) + Ll(nA,) =0. (2.95)

Thus there are two independent polarizations, unless one of the integers

¢, m, or n is zero, in which case (2.95) indicates that there is only one
polarization. It is easy to check that equations (2.91)—(2.93) define trans-
verse mode functions satisfying the Helmholtz equation (2.24) as well as
the condition that the transverse components of E vanish on the cavity
walls. Furthermore these mode functions are orthogonal and satisfy the
normalization condition (2.30), i.e.,

/OL dz /0 ’ dy /0 - dz[A2(r) + A2(r) + A%(r)] = L. (2.96)

Actually all we really require for the calculation of the Casimir force are
the allowed frequencies defined by (2.94):

2 g2 p2 1/2
Wemn = k¢mnc = 7C [fz‘ + fz" + fg] (297)
The zero-point energy of the field inside the cavity is therefore
1 2 m? n? 1z
' — ! - —_— —_—
> (2)5wemn = > 'xhe [L2 + 3+ Lg] : (2.98)
trmy" imn

The factor 2 arises from the two independent polarizations of modes with
¢,m,n # 0, and the prime on the summation symbol implies that a factor
1/2 should be inserted if one of these integers is zero, for then we have just
one independent polarization, as noted earlier.

In the physical situation of interest L is so large compared with L, = d
that we may replace the sums over £ and m in (2.98) by integrals: 3, —

S (L/m)? [ [ dksdky and

E@) = Z'(z)%nwlmn-»%(hc)z' /0 dk, /o dk,

tmn n

2.2\ 1/2
x (k§+k§ +"—d’;—> . (2.99)

This is infinite; the zero-point energy of the vacuum is infinite in any finite
volume.
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If d were also made arbitrarily large, the sum over n could be replaced
by an integral. Then the zero-point energy (2.99) would be

L2 d 0 [o <] 00
E(oo):-ﬁ(hc); /0 dk; / dk, / dk, (k2 + k2 + k2)"/2. (2.100)
0 0

which is also infinite.

The potential energy of the system when the plates are separated by a
distance d is U(d) = E(d) — E(c0), the energy required to bring the plates
from a large separation to the separation d:

L?he o i 2,2
Ud) = — [E’/O dkz/O dky (k2 + k2 + "d;' )3

d 00 o0 [s o]
——/ dk,/ dky/ dk, (k2 + k2 + kf)lﬂ] .
mJo 0 (]

(2.101)

This is the difference between two infinite quantities, but we shall now show
that it is nonetheless possible to extract from it a physically meaningful,
finite value.®

In polar coordinates u,0 in the k;, ky plane (dk.dk, = ududf) we have
_ L?hcm P e ,  n?w? 12
Ud = = (—2—) Lz—;) /0 duu (u + 7)

_ (;) /ooo dk, /Ooo duu(u® + kf)‘/"] , (2.102)

since § ranges from 0 to /2 for k,,k, > 0. We now introduce a cutoff
function f(k) = f([u® + k2]'/?) such that f(k) = 1 for k << km and
f(k) = 0 for k >> kp,. Physically, it can be argued that f(k) is necessary
because the assumption of perfectly conducting walls breaks down at small
wavelengths and especially for wavelengths small compared with an atomic
dimension. We might then suppose that k,, = 1/a,, where a, is the Bohr
radius. What we are assuming here is that the Casimir effect is primarily
a low-frequency, nonrelativistic effect. We thus replace (2.102) by

L?h o0
U(d) = 7r2c(.72—r) [z’[) dlfu(u2+n_z‘;r—2)l/2f([u2+%:—2]1/2)

n=0

_ (;) /:o dk, /ooo duu(u? + k22 f([u? + kf]m)]

8See Section 10.7 for a different approach.
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LT?‘C(Z_; [Z I /0°° dz(z + n2)1/2f(%[z +n2]H/?)

_ '/om dk Z';odz(z+K2)1/2f(§_[z+K2]1/2)] ’ (2.103)

where we have defined the new integration variables z = u?d?/x? and
k& =k.,d/m. Now

U(d) = (1:::36) L? [% F(0)+'§F(n) - /o ~ an(n)] . (2:104)

where

F(x) = /0 ” dz(z + k2)!/? f(%[:c + &212). (2.105)

According to the Euler-Maclaurin summation formula’

3 ~ = _Ypo) - LF(©0)+ =F"(0) .. (2.106)

> F(n) - i dcF(k) = ~5F(0) - 13 =0 (2

n=1

for F(00) — 0. To evaluate the nth derivative F(*)(0) we note that
o g
P = [ dw/af G, F)=-20(G0. (2100

x3

Then F'(0) = 0, F""(0) = —4, and all higher derivatives F(®)(0) vanish if
we assume that all derivatives of the cutoff function vanish at k = 0. Thus
T F(n) - [ deF(k) = —3F(0) — 735 and

w2he\ [ —4 n2he ) 2
= | — — ==l L, 2.108
U(d) = ( 443 ) L (720) (720d3 ( )
which is finite and independent of the cutoff function. The attracti.ve.force
per unit area between the plates is then F(d) = —n2hc/240d*. This is the
Casimir force, which we shall revisit in the following chapter and again in
Chapters 7 and 8. The principal message of this section is that changes in

the infinite zero-point energy of the electromagnetic vacuum can be finite
and observable.

7See M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions (Dover
Books, New York, 1971), Formula 3.6.28. For a derivation of the Euler-Maclaurin fo'r-
mula, see, for instance, E. T. Whittaker and G. N. Watson, A Course of Modern Analysis,
4th ed. (Cambridge University Press, New York, 1969), p. 127.
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2.8 Field Commutators

The fundamental field commutator (2.55) holds for all times ¢, and regard-
less of whether there are any sources of radiation. From this commutator
one readily obtains commutation relations for the field vectors, such as

[Ei(r1,t), Ej(rz,t2)] = [Bi(r1,t), Bj(rz,t2)]

_ ) b;; 9?2 92
= A4mihc <—c—"’_3t16t2 — 31’1.'37‘2,-)

x D(lr1 —r2|,t1 — t2), (2.109)

1)’ 3l ikr
“\37 d lc;e sin wyt

where

D(x,t)

1 * ) -
= 53 [_oo dksin krsin kct
1
= m[&(r + ct) — §(r — ct)). (2.110)

These “Pauli-Jordan commutators” imply that the fields at space-time
points (r,;) and (r2,t2) cannot in general be simultaneously measured if
these points can be connected by a light signal, i.e., if |r; —ra| = te(t1 —12).
Similarly

52

[E,'(l‘l,tl), B; (rg,tg)] = 41rihce,~jk——D(|r1 —ra|,t1 —t2).  (2.111)
bt16rak

The physical significance of these commutators was discussed by Bohr and
Rosenfeld (1950): since the field of a charged particle provides information
about the motion of the particle, the uncertainty relations (AzAp; > h/2,
etc.) for the particles must, for the consistency of quantum theory, imply
uncertainty relations also for the field. These uncertainty relations for the
electromagnetic field are embodied in the Pauli-Jordan commutators. Note
that D(r,t) = —D(r, —t), and so lime_,o D(r,t) = lim;_.o(8%/0t*)D(x,t) =
0. Equation (2.110) then indicates that in principle the electric and mag-
netic fields can be simultaneously measured everywhere in space at a fixed
instant of time.

Note also that these field commutators are derived for free space. The
presence of boundaries or even simple point sources will in general lead to
different commutation relations, simply because kT ip (2.110) must be
replaced by different mode functions.®

8This is discussed in the papers by Milonni (1982) and Cresser (1984) cited at the
end of the chapter.
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2.9 Zero-Point Spectrum Invariance

We have seen in connection with the classical Einstein-Hopf model that a
dipole oscillating with frequency w, moving with velocity v through a ther-
mal field, experiences a frictional force F = —Rv, where R is proportional
to p(w) — (w/3)dp/dw. The same result holds when the dipole is treated
quantum mechanically or if, as shown in Appendix B, the dipole is replaced
by an atom.

At T = 0 we have p(w) = po(w) = hw3/272c® and

w dpo

po(w) T 0. (2.112)
In other words, there is no frictional force acting on a dipole or atom
moving with constant velocity in the vacuum. The zero-point spectrum
proportional to w3, which is precisely the form required by the fluctuation—
dissipation relation (Section 2.6), is thus the the unique spectral energy
density for which there is no force. Alternatively, we can say that, since the
number of modes per unit volume in free space is proportional to w?, the
energy -%hw per mode is the unique zero-point energy for which there is no
force. The “uniqueness” refers, of course, to the functional dependence on
w; any zero-point energy proportional to w, or any spectral energy density
proportional to w?, will satisfy (2.112).

In fact it has been shown explicitly by Boyer (1969), using the Lorentz
transformations for the electric and magnetic fields, that po(w) is the unique
Lorentz-invariant spectral energy density of the electromagnetic field. That
is, the condition that po(w) be the same in all inertial frames requires it to
be proportional to 3. This conforms with our expectation that an observer
moving with constant velocity in the electromagnetic vacuum cannot tell
that he is moving!

2.10 The Unruh—Davies Effect

What if the observer is moving with constant (proper) acceleration in the
vacuum? Then a remarkable thing happens: the observer perceives himself
to be immersed in a thermal bath at the temperature T = ha/2rkc, where
a is the acceleration. This result was obtained by Unruh (1976), following a
closely related result of Davies (1975). In this section we shall demonstrate
this thermal effect of acceleration for the case of a scalar field, for which
the calculation is simpler. The electromagnetic case is somewhat more
complicated but the result is the same.
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. We consider a massless scalar field ¢(x,t) satisfying the wave equa-
t102n (V2 — ¢=28%/t2)¢ = 0 and having an energy density (1/87){(V4)® +
c~2(9¢/0t)?].° When quantized in free space ¢(x,t) has the form

rhe?\ /2 ; ;
é(x, 1) = ; (2w :‘V ) [ag @)e™® X + af (H)e=%¥), (2.113)

where again we assume periodic boundary conditions. Here, ay(t) and

at (t) are boson annihilation and creation operators and ay (t) = ap (0)ew?
for the free field, with wi = kc. The Hamiltonian is

1
Hy = _8_7r_ / Pr [(V¢)2 + %2.(%?-)2] = Zhwk(ait(ak + -;—) (2.114)
k

Everything here is much the same as in the case of the electromagnetic
field, but simpler.

Consider the field correlation function {¢(0,t)¢(0,¢ + 7)) at a point in
space for a field in thermal equilibrium at temperature T. In this case
(aL(O)ak,(O)) = 6i’k,ﬁ(w), fi(w) = (e"/*¥T — 1)~1. These results are intu-
itively obvious. Basically they imply that different modes of a thermal field
are uncorrelated, each mode amplitude having zero expectation value, and
that a mode of frequency w has an average number of quanta 7(w). Thus

9rhe?

woosetsm = 3 (55 [l

+ (a (B)ag(t +7)]

27rhc2 -— TWxT — — Wk T
= %: ( oV ) [(A(we) + 1)e™*™ +Ti(we)e ]

h o iwr * dww coswT
p [/0 dwwe +2[) W—_—l—] . (2.115)

The first integral may be evaluated as follows:

00 00
dowe™™ = li dwwe(THi7) = | 1 __1
| Jim A wwe ll_l"r(l) GoE - o (2.116)

9See Section 10.3.
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The second integral follows from the general formulal?

om dzizl:;lg’fﬁ = (-1)'"3‘?—:;"% [% coth wb — 515] . (2117)
Thus
* dwweoswr _ 1 (”_’“z)z csch? ("kTT) (2.118)
/0 elFT _1 12 h A
and
2
((0,)6(0,t+ 7)) = ;"; [—;17 T (#) csch? (wkrirr)]
= —2?2 (“_’;Z)Z esch? ("k;fr> . (2.119)

Let us consider also the correlation function (o(y, t)o(y + x,t + o
in the vacuum state of our scalar field. In this case (ak(0)ag.(0)) =

(a}.(0)ay.(0)) = 0 and (g (0)al, (0)) = 6 1, and from (2:113) we obtain

2rhe?\ _ikx iwer
(b Dy +xt+N0 = }E(-;’k—v—)e xe

2 oo . 3
_ ke / dkk?w™ e /koe"k'x,
472 0 .
(2.120)

where the last integral is over all solid angles about k:

2x | 4 " 0
/koe_ik'x = / d¢/ dfsin et "% = 4w
0 0

sinkz (5 121)

Thus

het /00 dkkzw'le‘”T——Sin kz
7 Jo

($(y,t)d(y +x,t+ 7))o e

S GRS S (2.122)

T 2 —c21?

10[,. S. Gradshteyn and I. M. Rhyzhik, Table of Integrals, Series, and Products (Aca-

demic Press, New York, 1980), p. 494, No. 13.
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We turn now to an observer undergoing uniform acceleration in the vac-
uum. Uniform acceleration here is defined with respect to an instantaneous
inertial frame in which the observer is at rest. The proper acceleration a is
the acceleration relative to this instantaneous inertial rest frame, and if a is
constant the acceleration is said to be uniform. The acceleration dv/dt in
the lab frame may be related to a using standard Lorentz transformations

for acceleration: o2
d 2
d_’t’ =a (1 - :_2) . (2.123)

Simple integrations give v(t) = at(1 + a®t?/c?)~'/2 and z(t) = ¢*/a[(1 +
a?t?/c?)}/? — 1] if we assume v = =z = 0 when t = 0. Using the relation
dt = dr(1—v?/c?)~1/2 between lab and proper time intervals, respectively,

we have " s
dt a2t2 - a2t2
dar (1 T2y a2t2) = (1 + —cz—) (2.124)

t(r) = gsinh % (2.125)

and

if we define (7 = 0) = 0. We can use this result to express z and v in the
lab frame in terms of the proper time 7:

2
z(r) = =[cosh == — 1}, (2.126)
a c
v(r) = ctanh Ec: (2.127)

We recall as an aside the motion of a particle of rest mass m acted upon
by a constant force F. In this case the linear momentum p = Ft = mv(1 —
v2/c?)"1/2 and so v = (Ft/m)[1 + (Ft/mc?)]"Y/? and = = (mc?/F)([1 +
(Ft/mc?)]'/? — 1), which are the results given previously for a = F/m. The
world line is a hyperbola in the z — ¢ plane, with asymptote z = ct, and
consequently this motion is often called hyperbolic motion. For Ft << mc?
we have the classical parabolic motion, z(t) = 1at?.

The vacuum correlation function (¢(zy,t1)¢(x2,t2))o measured by our
uniformly accelerated observer is given by (2.122) with z = z;—z; and 7 =
ta—ty, or z = (c?/a)[cosh(ary/c)—cosh(ary /c)] and T = (c/a)[sinh(atz/c)—
sinh(ar; /c)]. Since

4 4
Cc aTy an c . aTy . aTy
z? - *r? = —[cosh—= — cosh —1J? - = [sinh —= — sinh —?
a c ¢ a c c

4 .sinhn __—_0(1'2 — ")

a7 T (2.128)
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it follows from (2.122) that

ha? a(re— T
($(z1,t1)b(22,t2))o = —;Egcschz—(—%z—i-)-, (2.129)
which is equivalent to the thermal-field correlation function (2.119) with

temperature
ha

T= 2rke’
The meaning of this result is that a uniformly accelerated detector in
the vacuum responds as it would if it were at rest in a thermal bath at
temperature T' = ha/2mkc. In a sense the effect of the acceleration is to
“promote” zero-point quantum field fluctuations to the level of thermal
fluctuations. It is hardly obvious why this should be so — it took half a
century after the birth of the quantum theory of radiation for the thermal
effect of uniform acceleration to be discovered.

(2.130)

2.11 Thermal Radiation

There are two reasons for reviewing aspects of thermal radiation in this sec-
tion and the next. First, certain statistical properties of thermal radiation
are similar to those of the vacuum field. Second, the quantum theory of
thermal radiation provides a clearer picture of some results used in Chapter
1, particularly in connection with the role of the zero-point (vacuum) field
in the blackbody problem.

The probability P, that there are n photons in a field mode of frequency
w in thermal equilibrium at temperature T — that is, that the mode is
excited to the harmonic oscillator level n — is

e—(n+1,-)ﬁw/kT e—nhw/kT
Po = S iR e
— e—ﬂh‘”/kT(l _ e-h“’/kT)_l . (2131)

The average photon number is thus
00
=y nPy= (eMFT 1)1, (2.132)
n=0

and we can use this result to write Py in terms of T:

"

Pn = W . (2133)
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Since there are (w?/m%c®)V dw modes of the field in the frequency inter-
val [w,w+dw] in a volume V large compared with c/w, the spectral energy
density is p(w) = hwfi(w)w?/72c3, which of course is the Planck spectrum
without the zero-point contribution. ’

. The results (2.131)-(2.133) depend only on the frequency of the radia-
tion, not its wave vector k or polarization A. Thermal radiation as described
by the Planck spectrum is isotropic and unpolarized.

We can use (2.133) to calculate averages of functions of n. For instance,

(n?) =) _ n’P, =2’ +7, (2.134)
n=0
and so
(An?) = (n?) — ()2 =22 +A -2 =T° + T, (2.135)

whicl.l is a well known consequence of Bose-Einstein statistics.!?
Since p(w) = hw3A(w)/72c3, we can write (2.135) in the form

w23 [7r2c3

An@) = 55 [2500 o)

w2c3 n2c3
= 53 [hwp(w) + sz(w)] . (2.136)

The variance in the energy of the thermal field is thus

(AE?) = anwgmn(wk)?)qé%m) / PER%w? (An(w)?)
ka
%
= n) / duww?(Fw?)(An(w)?) = / (AE2),
(2.137)
where
9 %4 4 n2c3
(AE?) = mhzw (An(w)*)dw = [Awp(w) + —; P(w)]Vdw. (2.138)

This is the Einstein fluctuation formula (1.63).
And so Einstein’s fluctuation formula can be regarded as a precursor
of the result (2.135) of Bose-Einstein statistics. From the discussion in

11Gee, for instance, L. D. Landau and E. M. Lifshitz, Statisti i i
, , L. D. . M. , Statistical Ph —
Wesley, Reading, Mass., 1969), p. 355. e eics (Addison
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Section 1.7 we can associate mZ in (2.135) with wave fluctuations, and 7
with particle fluctuations.

In Section 1.7 we also inferred that the particle fluctuation term could
be attributed to the zero-point energy of the field. To appreciate this from
the perspective of the quantum theory of the field, note that

(An?) = (n?) — (n)? = (ataata) - (a)[a)2
= (at(ata + 1)a) - (a)fa)2
(atataa) + (ata) - (a'ta)2
= (atataa) +7 - 72, (2.139)

where a is the photon annihilation operator for the field mode under consid-
eration. Now a mode of a thermal field is described by the density matrix

p=_ Paln)(nl, (2.140)

and therefore

(atataa) = E(n|ata1aa|n). (2.141)
But aa|n) = v/naln— 1) = y/n(n—1)jn - 2), so that
(atataa) = Z:on(n _1)P, = g;on(n - 1)(?:"_;7,3 —om?  (2.142)

for a thermal field. Then (2.139) reproduces (2.135). But note that the
particle term 7 in this formula arises from the second term in the last
line of (2.139), i.e., from the fact that the commutator [a,al‘] = 1. Note
furthermore that this same commutator gives rise to the zero-point energy
of a harmonic oscillator such as a field mode, as is clear from equation (2.9).
The conclusion is obvious: the particle term in the Einstein fluctuation
formula, or equivalently (2.135), is closely linked to the existence of zero-
point energy. ‘

The “wave” fluctuation term %2 in the variance (An?) for thermal radi-
ation arises from the factor of 2 in (atataa) = 27?. This important factor
is the origin of Brown-Twiss correlations,1? also known as photon bunch-
ing. Suppose we take a spectrally filtered beam of thermal radiation and

12} Hanbury Brown and R. Q. Twiss, Nature 127, 27 (1956); Proc. Roy. Soc. Lc‘)nd.
A242, 300 (1957). For a discussion of the Brown-Twiss effect see, for instance, Knight
and Allen (1983); Loudon (1983); Milonni (1984).
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employ a detection scheme in which photons are counted by two-photon
absorption rather than ordinary one-photon absorption. That is, a photo-
electron is produced by the simultaneous absorption of two photons. As
shown in Appendix E, such a detector responds to the normally ordered
field correlation function (atafaa) if we have a single field mode. The fact
that this quantity exceeds 72 indicates that the photons have a statistical
tendency to arrive in pairs. Such photon bunching of thermal radiation was
first measured by Brown and Twiss in the 1950s.

It is worth noting that this “photon bunching” may be understood
in purely classical terms, based on the Einstein—-Hopf model of a thermal
field as a superposition of waves with independent random phases (Section
1.5). Comparing equations (1.67) and (1.68), we note that (E4(x,t)) =
2(E%(r,1))?, or TZ = 2T°. Thus there are positive intensity correlations or,
in photon language, a tendency for photons to arrive in pairs.

It should be emphasized that photon bunching is not a universal prop-
erty of light. An ideal laser, for example, gives (atataa) = 72, indicating
that the photon arrivals are uncorrelated. In other words, an ideal laser
has no wave fluctuations: (An2?) = 7. It is the closest we can get to the
idealized, nonfluctuating classical wave of light.

A thermal field, like the vacuum field, is described by Gaussian statistics.
Consider for simplicity a single mode of the field, for which the electric field
operator is given by equation (2.35). The characteristic function of a single
component of this field, which is defined as

C[E(r,t),€] = (XFTD), (2.143)
gives the probability distribution P[E(r,t)] via a Fourier transform:
PEG,0)] = 51; / dee—EC[E, £]. (2.144)
Using (2.35), we have

ClE(x,t),€] = (eif(““""“.“t)), (2.145)

where a = i(27hw)Y/2 A,(r). For a thermal field, according to Bloch’s the-
orem for a harmonic oscillator in thermal equilibrium,!3

(eeatatally _ =Elali ) (2.146)

13F Bloch, Z. Phys. T4, 295 (1932). See also W. H. Louisell, Radiation and Noise in
Quantum Electronics (McGraw-Hill, New York, 1964), p. 244.
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so that, from (2.144),

P[E(r,t)] = LD (2.147)

E

with ; )
u= 2|a|2(Ti+ -2-) = 47rhw|Ao(r)|2(ﬁ+ -2-) (2.148)

Comparing (2.147) with the distribution (2.42) for the case of the vacuum
field, we see that both the vacuum and thermal fields are distributed ac-
cording to a Gaussian probability distribution. The vacuum distribution is
just the T — 0 limit of the thermal distribution. These results are easy to
generalize to the multimode case.

2.12 Thermal Equilibrium

We now turn our attention once more to the Einstein—Hopf model of ther-
mal equilibrium between radiation and matter, this time treating both the
radiation and the dipole oscillators quantum mechanically (Milonni, 1981a).
This will allow us, among other things, to better understand the Einstein—
Stern derivation of the Planck spectrum discussed in Section 1.6.

The impulse imparted to a dipole oscillator in the quantum-mechanical
version of the Einstein-Hopf model is given by equation (1.48), but now z(t)
and 0E,(t)/0x are quantum-mechanical operators. For the dipole oscillator

we introduce lowering and raising operators, o and at, respectively, as in
Section 2.2: z = i(h/2mw,)'/*(o — at),[a, at] = 1. For 0E,/0z we have,
from (2.56),

OE, orhwy \
-y ( k k) N ROETING) (2.149)
ka

at the position r = 0 of one of the dipole oscillators. Thus

T OE,(t)
€ A dtz(t)_—a.’l,‘——

, BoO\V/? orhwe \ /2
()" ()
° ka

x /0 " dtfo(t) - ot (O){aga () + al, (O] (2.150)

A
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We shall assume that the dipole-field coupling is sufficiently weak over

the time irllterval [0, 7] that o(t) and ay,(t) follow approximately their
free evolution in (2.150): of(t) = o(0)e” ! = ge~ ™! and ay,(t) =
ap, (0)e ™t = ap, e~" et ' *

R\ (2B \ P .
T (2mw ) Z( 7I-V k) k,ek)‘z [oak)‘/ die—t(wrtwa)t
¢ ka 0

A
R Y / dpeiler=ee)t — h.c.]
0

. h 1z 27rhwk 1/2
= (2mwo> ; ( vV ) kzey,,
A

sin 2(wy +w,)T

A

R

x [ork'\e"'(“’""'“"’)’/z

%(wk + w,)
f f(wk—wo)7/2 sin %(wk - wO)T
—_oa (4 o r— rere——— —
ka L(wr — w,) h.c (2.151)

Terms involving wg +w, do not in the end contribute to (A?), just as such
“energy nonconserving” terms do not contribute to transition probabilities
in standard second-order perturbation theory. Thus

(B2 by \ V2
_16(2mw0) %2( Vv ) kxek,\z
A

sin -;-(wk —w,)T

A

R

x [oa]  e@r=w)/2 _h.c]

o (2.152)
and
2 o~ 2f 2R 2nhwy\ 4 o Sin? & (wg —w,)T
(A%) = e k) k2e 2k
() T (57 ¥ 255
x [(aaf)(a}uahwr (ot o) (apral,)] - (2.153)

R _
Let us write (ak)‘“k,\> = 7i(w) and (ak'\a;[u) = (aL\akA)+1 =7(w)+1,
and proceed to the mode continuum limit V — oo in (2.153):

2h Vv 2mhw in2 l(w -
AZ) = 2 v 3 2 o Sin’3(w—wo)T
(A% ¢ (mw,,) (8#3) /d k ( Vv )k”;ekxz (W — w,)?
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x [(ootym) + (et o)) + V)

22 k2\ sin? 3w —wo)T
- <k /dakwkg(l—k—;)s_—L(————)—

272 mw, (w—wo)?

x [(w’i)ﬁ(w) + (ol o)mw) +1)] . (2.154)

In writing this expression we have used the identity z = gfti)ﬁ+2 2 €k xs e];'E N
for any unit vector Z, and therefore s eih =1—(k-2)?=1-k;/k.

Now
k2 k2 4+ k2
/d3kk,2, (1 - k—fi) /dklcz/dﬂkk?, (—ﬁ_!
= /dk/dnka(k§+k§)
2x x
/dkk‘/ d¢/ df sin 8(sin 6 cos ¢)?sin’ 6
0

0
= 167 dkk* = lﬁr—/dww‘ (2.155)
15 15¢%

and so

8e2h? gsin? 2(w — wo)T

(Az) = m /0 w (w — wo)?
x [(aa'f)ﬁ(w) + (ot Fw) + 1)

aif:::: [(“T () + (o7 o) (F(wo) + 1)]

N /°° deinz 3(w —wo)T
0 (W —wo)?

4;27::;3 (oot )W) + (ot o)) +1)] 7. (2.156)

R

R

As in the classical Einstein—Hopf model the condition for thermal equ?-
librium is 7~ 1(A2) = 2RkT [Equation (1.47)]. From (2.156) and (1.43) this
condition is

o) — 2 2L = o [ttt + (oto)mwa + ] (2157
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Now the dipole is just another harmonic oscillator, and so in thermal equi-
librium (00’1) = (c‘r‘t o) +1="T(w,) + 1, whence

(0o Va(w,) + (T ) AWo) +1] =  2A(wo)[A(wo) + 1]
7l'2c3 2 w3
= 2 ( hw:g ) [p2(wo) + :zc;p(wo)];

(2.158)

where we have again employed the relation %i(w,) = (#x2¢%/hw3)p(w,). Then
equation (2.157) yields exactly the Einstein-Stern equation (1.55), whose
solution is the Planck spectrum.

It is hardly surprising that the quantum theory of the Einstein-Hopf
model produces the Planck spectrum for the spectral energy density of
radiation at thermal equilibrium. What is of interest is to see just what
about the quantum theory leads to the Planck spectrum rather than the
Rayleigh-Jeans spectrum of the classical Einstein—Hopf model. To this end

we use the identities aot =olo + 1 and akAa;‘(A = aL\akA + 1 to write
1
(adt)(aL\ak,\) + (ata)(akxa;‘u) = 2 [(”t”)(ai,\akx) + 5(010)
1
+ §(aluak,\)] . (2.159)

Without the term %(afa) + %(at Aak)‘) in this expression we are led to
the Rayleigh—Jeans spectrum. 111(1 other words, the Planck spectrum is
a consequence of the quantum-mechanical commutation rules [o, at] =
[ak'\,aL\] =1

For a more physical interpretation of the role of quantum mechanics,
let us note that in the final expression for 771(A?) only the field modes
at wy = w, contribute. These modes impart a mean-square momentum
transfer proportional to

(o [t oymtwe) + g oTo) + Jtwe)| = (Fc) )
+ H;‘p(HOSC) + H:EC(HF)’ (2'160)

where Hoee = hwo(ata) and Hf = hwoata are the Hamiltonian operators
for the dipole oscillator and a resonant field mode, respectively, excluding
zero-point energies, and HXP. and HE® are the corresponding zero-point
energies (= %hw,) Were it not for the zero-point energies in (2.160), we
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would obtain the classical Rayleigh- Jeans spectrum instead of the Planck
spectrum. These terms give rise to the “particle” term proportional to
p(w,) in (2.158).

All this is consistent with the classical discussion in Section 1.6. Since

HZP(Houe) + HE(Hr) = 2HZL(Hr) = hwo(HF), (2.161)

a classical theory of the Einstein—Hopf model that includes a zero-point
energy hw, for a material oscillator, but not for any field oscillator, leads
to the same equation (2.157) of quantum theory, and therefore gives the
Planck spectrum. This was the approach of Einstein and Stern.

Alternatively, we can include in the classical theory a zero-point energy
-,i;hw,, for both the material oscillator and a field mode of frequency w,,
and this too leads to the Planck spectrum, as discussed in Section 1.6.
This approach is closer to the (quantum-mechanical) truth. But in such
a classical approach we must follow the ad hoc procedure of dropping a
contribution 1Aw,po(w,), which arises from the product H?®_HE®. There
was really no justification of this Ansatz in Section 1.6 other than the fact
that it gave the Planck spectrum.

In the quantum theory just presented, the terms HEP(Hosc) and HZE
x (H) leading to the Planck spectrum arise “automatically” from the zero-
point energies of the dipole and field oscillators or, more formally, from the
commutation properties of the dipole and field operators. But there is no
term HZP HP that had to be dropped ad hoc in the classical approach to
the Planck spectrum presented in Section 1.6. In other words, the quantum
theory of the Einstein—-Hopf model apparently does not allow for any effect
of the interaction between a ground-state dipole oscillator and the vacuum
field.

We must be careful here about what we mean by the “effect” of the
vacuum field on ‘a ground- state dipole oscillator. The dipole coordinate
obeys the Heisenberg equation of motion (2.86), and we have shown that the
vacuum field is necessary for the preservation of the canonical commutation
relations for the dipole coordinate and momentum operators, regardless of
the state of the dipole. In this sense the vacuum field certainly has a formal
“effect.” Physically, however, a dipole oscillator in its ground state shows
no obvious effect of its interaction with the vacuum field: a ground-state
oscillator in the vacuum remains forever in its ground state. Whereas an
excited dipole oscillator can undergo spontaneous emission attributable in
part to the vacuum field, there is no such thing as “spontaneous absorption”
by a ground-state oscillator in vacuum. We shall see that in the ground state
of an atom spontaneous absorption is precluded by an exact cancellation of
vacuum field fluctuations by fluctuations in the atom.
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2.13 Summary

In the quantum theory of the electromagnetic field, classical wave ampli-
tudes a, a™ are replaced by operators a, af satisfying {a, at] = 1. The quan-
tity |a|? appearing in the classical expression for the energy of a field mode
[cf. equation (2.29)] is replaced in quantum theory by the photon number
operator ala. The fact that [a, aTa] # 0 implies that quantum theory does
not allow states of the radiation field for which the photon number and a
field amplitude can be precisely defined, i.e., we cannot have simultaneous
eigenstates of ala and a. The reconciliation of wave and particle attributes
of the field is accomplished via the association of a probability amplitude
with a classical mode pattern, as discussed in Section 2.4. The calculation
of field modes is an entirely classical problem, while the quantum properties
of the field are carried by the mode “amplitudes” a and al associated with
these classical modes.

The zero-point energy of the field arises formally from the noncommuta-

tivity of @ and al. Thisis true for any harmonic oscillator: the zero-point en-
ergy %hw appears when we write the Hamiltonian H = p?/2m+ -.1;m<.azq2 =
%hw(aa]t + aTa) as ﬁw(ata + 1) [Equation (2.9)].
. This zero-point energy can be dropped from the Hamiltonian by redefin-
ing the zero of energy, or by arguing that it is a c-number and therefore
has no effect on Heisenberg equations of motion. However, when we do this
and solve the Heisenberg equation for a field operator, we must include the
vacuum field, which is the homogeneous part of the solution for the field
operator. In fact we showed in Section 2.6 that the vacuum field is essential
for the preservation of commutators and the formal consistency of the the-
ory. When we calculate the field energy we obtain not only a contribution
from any sources which may be present, but also a contribution from the
vacuum field. The latter is of course the zero-point field energy. In other
words, the zero-point field energy “reappears” even though we may have
deleted it from the Hamiltonian.

As we saw in the first chapter, the concept of zero-point energy arose
before the development of the quantum formalism. However, in quantum
theory zero-point energy rests upon a much firmer foundation than was
possible classically. This is illustrated by a comparison of the Einstein—
Stern theory of blackbody radiation with the quantum theory presented in
Section 2.12.

Observable phenomena like the Casimir effect strongly suggest that the
vacuum electromagnetic field and its zero-point energy are real physical
entities and not mere artifices of the quantum formalism. In the following
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chapter we shall turn to other things that similarly suggest the physical
reality of the fluctuating vacuum electromagnetic field.

Finally, the Maxwell equations (2.18)—(2.21) are satisfied by the electric
and magnetic field operators in the quantum theory of the field. Maxwell
was lucky: his equations turned out to be Lorentz—invariant and gauge—
invariant, and to retain the same form in quantum theory. But whereas in
classical physics one makes the “natural” assumption that E=B = 0 in
the absence of any sources, this cannot be done in quantum theory. Such
an assumption is not only inconsistent with quantum theory; it would also
appear to contradict experimental facts such as the Casimir force, the Lamb
shift, and other effects to which we turn in the following chapter.
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